Elastic Machine Learning Algorithms in Amazon SageMaker
暂无分享,去创建一个
Julio Delgado | Ramesh Nallapati | Edo Liberty | Bing Xiang | Syama Sundar Rangapuram | Baris Coskun | Madhav Jha | Lorenzo Stella | Tim Januschowski | Valentin Flunkert | Zohar S. Karnin | Sebastian Schelter | David Salinas | Alex Smola | Yuyang Wang | Saswata Chakravarty | Zohar Karnin | Jan Gasthaus | Laurence Rouesnel | Philip Gautier | Piali Das | Amir Sadoughi | Yury Astashonok | Can Balioglu | David Arpin | Syama Rangapuram | Alex Smola | Bernie Wang | Edo Liberty | Sebastian Schelter | Bing Xiang | Saswata Chakravarty | Ramesh Nallapati | Jan Gasthaus | David Salinas | Valentin Flunkert | Tim Januschowski | Laurence Rouesnel | B. Coskun | Julio Delgado | Amir Sadoughi | Yury Astashonok | Piali Das | Can Balioglu | Madhav Jha | P. Gautier | David Arpin | Lorenzo Stella | D. Arpin | Baris Coskun
[1] C. A. R. Hoare. Algorithm 63: partition , 1961, CACM.
[2] C. A. R. Hoare,et al. Algorithm 65: find , 1961, Commun. ACM.
[3] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[4] Sudipto Guha,et al. Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..
[5] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[6] Rob J Hyndman,et al. Automatic Time Series Forecasting: The forecast Package for R , 2008 .
[7] D. Sculley,et al. Web-scale k-means clustering , 2010, WWW '10.
[8] Steffen Rendle,et al. Factorization Machines , 2010, 2010 IEEE International Conference on Data Mining.
[9] Stephen J. Wright,et al. Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.
[10] Adam Meyerson,et al. Fast and Accurate k-means For Large Datasets , 2011, NIPS.
[11] Joseph M. Hellerstein,et al. Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..
[12] Sergei Vassilvitskii,et al. Scalable K-Means++ , 2012, Proc. VLDB Endow..
[13] Carlos Guestrin,et al. Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .
[14] Steffen Rendle,et al. Factorization Machines with libFM , 2012, TIST.
[15] Martin Wattenberg,et al. Ad click prediction: a view from the trenches , 2013, KDD.
[16] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[17] Alexander J. Smola,et al. Communication Efficient Distributed Machine Learning with the Parameter Server , 2014, NIPS.
[18] Christopher Ré,et al. DimmWitted: A Study of Main-Memory Statistical Analytics , 2014, Proc. VLDB Endow..
[19] Alexander J. Smola,et al. Scaling Distributed Machine Learning with the Parameter Server , 2014, OSDI.
[20] Venu Satuluri,et al. Factorbird - a Parameter Server Approach to Distributed Matrix Factorization , 2014, ArXiv.
[21] Jimmy J. Lin,et al. Summingbird: A Framework for Integrating Batch and Online MapReduce Computations , 2014, Proc. VLDB Endow..
[22] D. Sculley,et al. Hidden Technical Debt in Machine Learning Systems , 2015, NIPS.
[23] Zheng Zhang,et al. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems , 2015, ArXiv.
[24] Maxim Sviridenko,et al. An Algorithm for Online K-Means Clustering , 2014, ALENEX.
[25] Jeffrey F. Naughton,et al. Model Selection Management Systems: The Next Frontier of Advanced Analytics , 2016, SGMD.
[26] Ameet Talwalkar,et al. MLlib: Machine Learning in Apache Spark , 2015, J. Mach. Learn. Res..
[27] Yuan Yu,et al. TensorFlow: A system for large-scale machine learning , 2016, OSDI.
[28] Phil Blunsom,et al. Neural Variational Inference for Text Processing , 2015, ICML.
[29] Alexander J. Smola,et al. DiFacto: Distributed Factorization Machines , 2016, WSDM.
[30] Edo Liberty,et al. Optimal Quantile Approximation in Streams , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[31] Shirish Tatikonda,et al. SystemML: Declarative Machine Learning on Spark , 2016, Proc. VLDB Endow..
[32] Tilmann Rabl,et al. Benchmarking Data Flow Systems for Scalable Machine Learning , 2017, BeyondMR@SIGMOD.
[33] Valentin Flunkert,et al. DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks , 2017, International Journal of Forecasting.
[34] Joos-Hendrik Böse,et al. Probabilistic Demand Forecasting at Scale , 2017, Proc. VLDB Endow..
[35] Xin Zhang,et al. TFX: A TensorFlow-Based Production-Scale Machine Learning Platform , 2017, KDD.
[36] Neoklis Polyzotis,et al. Data Lifecycle Challenges in Production Machine Learning , 2018, SIGMOD Rec..
[37] Felix Bießmann,et al. On Challenges in Machine Learning Model Management , 2018, IEEE Data Eng. Bull..
[38] Syama Sundar Rangapuram,et al. Deep Learning for Forecasting: Current Trends and Challenges , 2018 .
[39] Syama Sundar Rangapuram,et al. Deep Learning for Forecasting , 2018 .
[40] Sebastian Schelter,et al. Differential Data Quality Verification on Partitioned Data , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).
[41] Stephan Kolassa,et al. A Classification of Business Forecasting Problems , 2019 .
[42] Stefanie N. Lindstaedt,et al. SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle , 2019, CIDR.