How Good Is Multi-Pivot Quicksort?
暂无分享,去创建一个
Martin Dietzfelbinger | Martin Aumüller | Pascal Klaue | Martin Dietzfelbinger | Martin Aumüller | Pascal Klaue
[1] Martin Aumüller,et al. On the Analysis of Two Fundamental Randomized Algorithms - Multi-Pivot Quicksort and Efficient Hash Functions , 2015 .
[2] Martin Dietzfelbinger,et al. Optimal Partitioning for Dual-Pivot Quicksort , 2013, ICALP.
[3] T. C. Hu,et al. Optimal Computer Search Trees and Variable-Length Alphabetical Codes , 1971 .
[4] Robert Sedgewick,et al. Fast algorithms for sorting and searching strings , 1997, SODA '97.
[5] Sebastian Wild,et al. Average Case Analysis of Java 7's Dual Pivot Quicksort , 2012, ESA.
[6] Martin Dietzfelbinger,et al. Optimal Partitioning for Dual-Pivot Quicksort , 2013, ACM Trans. Algorithms.
[7] Adriano M. Garsia,et al. A New Algorithm for Minimum Cost Binary Trees , 1977, SIAM J. Comput..
[8] Sebastian Wild,et al. Analysis of Branch Misses in Quicksort , 2015, ANALCO.
[9] Amr Elmasry,et al. Branch Mispredictions Don't Affect Mergesort , 2012, SEA.
[10] Bob Sedgewick,et al. Multi-Pivot Quicksort : Theory and Experiments , 2014 .
[11] Vitaly Osipov,et al. GPU sample sort , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).
[12] Vasileios Iliopoulos. A note on multipivot Quicksort , 2014, ArXiv.
[13] Sebastian Winkel,et al. Super Scalar Sample Sort , 2004, ESA.
[14] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science , 1991 .
[15] Sebastian Wild,et al. Average Case and Distributional Analysis of Dual-Pivot Quicksort , 2013, ACM Trans. Algorithms.
[16] Kurt Mehlhorn,et al. On a Model of Virtual Address Translation , 2015, ACM J. Exp. Algorithmics.
[17] Stefan Edelkamp,et al. BlockQuicksort: How Branch Mispredictions don't affect Quicksort , 2016, ArXiv.
[18] Jon Louis Bentley,et al. Engineering a sort function , 1993, Softw. Pract. Exp..
[19] Richard E. Ladner,et al. The influence of caches on the performance of sorting , 1997, SODA '97.
[20] M. H. van Emden. Increasing the efficiency of quicksort , 1970, CACM.
[21] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science (2. ed.) , 1994 .
[22] C. SIAMJ.. OPTIMAL SAMPLING STRATEGIES IN QUICKSORT AND QUICKSELECT , 2001 .
[23] Edsger W. Dijkstra,et al. A Discipline of Programming , 1976 .
[24] Helmut Prodinger,et al. Counting Zeros in Random Walks on the Integers and Analysis of Optimal Dual-Pivot Quicksort , 2016, ArXiv.
[25] Markus E. Nebel,et al. Analysis of Pivot Sampling in Dual-Pivot Quicksort: A Holistic Analysis of Yaroslavskiy’s Partitioning Scheme , 2014, Algorithmica.
[26] Conrado Martínez,et al. Optimal Sampling Strategies in Quicksort and Quickselect , 2002, SIAM J. Comput..
[27] Salvador Roura,et al. Improved master theorems for divide-and-conquer recurrences , 2001, JACM.
[28] Alessandro Panconesi,et al. Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .
[29] Naila Rahman. Algorithms for Hardware Caches and TLB , 2002, Algorithms for Memory Hierarchies.
[30] Robert Sedgewick. Quicksort with Equal Keys , 1977, SIAM J. Comput..
[31] Stefan Edelkamp,et al. BlockQuicksort: Avoiding Branch Mispredictions in Quicksort , 2016, ESA.
[32] Peter Sanders,et al. How Branch Mispredictions Affect Quicksort , 2006, ESA.
[33] Kok-Hooi Tan. An asymptotic analysis of the number of comparisons in multipartition quicksort , 1993 .
[34] P. Kam,et al. : 4 , 1898, You Can Cross the Massacre on Foot.
[35] Donald E. Knuth,et al. The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .
[36] Keith Bostic,et al. Engineering Radix Sort , 1993, Comput. Syst..
[37] Pascal Hennequin. Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche , 1991 .
[38] W. Donald Frazer,et al. Samplesort: A Sampling Approach to Minimal Storage Tree Sorting , 1970, JACM.