Efficient Calculations of 3-D FFTs on Spiral Contours

This paper proposes a fast algorithm, called the SpiralFFT, that computes samples of the 3-D discrete Fourier transform of an object of interest along spiral contours in frequency space. This type of sampling geometry is prevalent in 3-D magnetic resonance imaging, as spiral sampling patterns allow for rapid, uninterrupted scanning over a large range of frequencies. We show that parameterizing the spiral contours in a certain way allows us to decompose the computation into a series of 1-D transforms, meaning that the 3-D transform is effectively separable, while still yielding spiral sampling patterns that are geometrically faithful and provide dense coverage of 3-D frequency space. We present a number of simulations which demonstrate that the SpiralFFT compares favorably to a state-of-the-art algorithm for computing general non-uniform discrete Fourier transforms.

[1]  D. Donoho,et al.  Fast Slant Stack: a notion of Radon transform for data in a Cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible , 2003 .

[2]  G. Beylkin On the Fast Fourier Transform of Functions with Singularities , 1995 .

[3]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[4]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[5]  A. Song,et al.  An improved gridding method for spiral MRI using nonuniform fast Fourier transform. , 2003, Journal of magnetic resonance.

[6]  R. Cox,et al.  Direct reconstruction of non‐Cartesian k‐space data using a nonuniform fast Fourier transform , 2001, Magnetic resonance in medicine.

[7]  C. Ahn,et al.  High-Speed Spiral-Scan Echo Planar NMR Imaging-I , 1986, IEEE Transactions on Medical Imaging.

[8]  Antony Ware,et al.  Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..

[9]  Volker Rasche,et al.  Resampling of data between arbitrary grids using convolution interpolation , 1999, IEEE Transactions on Medical Imaging.

[10]  Bob S. Hu,et al.  Fast Spiral Coronary Artery Imaging , 1992, Magnetic resonance in medicine.

[11]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[12]  J. Benedetto,et al.  Modern Sampling Theory: Mathematics and Applications , 2012 .

[13]  Dwight G Nishimura,et al.  Design and analysis of a practical 3D cones trajectory , 2006, Magnetic resonance in medicine.

[14]  Stefan Kunis,et al.  Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.

[15]  Jan Mayer,et al.  A numerical evaluation of preprocessing and ILU-type preconditioners for the solution of unsymmetric sparse linear systems using iterative methods , 2009, TOMS.

[16]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[17]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[18]  Justin K. Romberg,et al.  Spiral FFT: An efficient method for 3-D FFTS on spiral MRI contours , 2010, 2010 IEEE International Conference on Image Processing.

[19]  Gabriele Steidl,et al.  A note on fast Fourier transforms for nonequispaced grids , 1998, Adv. Comput. Math..

[20]  Michael Elad,et al.  Accurate and fast discrete polar Fourier transform , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[21]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[22]  L. Rabiner,et al.  The chirp z-transform algorithm , 1969 .

[23]  M. Fenn,et al.  On the computation of the polar FFT , 2007 .

[24]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[25]  J. D. O'Sullivan,et al.  A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography , 1985, IEEE Transactions on Medical Imaging.