Efficient Calculations of 3-D FFTs on Spiral Contours
暂无分享,去创建一个
[1] D. Donoho,et al. Fast Slant Stack: a notion of Radon transform for data in a Cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible , 2003 .
[2] G. Beylkin. On the Fast Fourier Transform of Functions with Singularities , 1995 .
[3] T. Strohmer,et al. Efficient numerical methods in non-uniform sampling theory , 1995 .
[4] Vladimir Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..
[5] A. Song,et al. An improved gridding method for spiral MRI using nonuniform fast Fourier transform. , 2003, Journal of magnetic resonance.
[6] R. Cox,et al. Direct reconstruction of non‐Cartesian k‐space data using a nonuniform fast Fourier transform , 2001, Magnetic resonance in medicine.
[7] C. Ahn,et al. High-Speed Spiral-Scan Echo Planar NMR Imaging-I , 1986, IEEE Transactions on Medical Imaging.
[8] Antony Ware,et al. Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..
[9] Volker Rasche,et al. Resampling of data between arbitrary grids using convolution interpolation , 1999, IEEE Transactions on Medical Imaging.
[10] Bob S. Hu,et al. Fast Spiral Coronary Artery Imaging , 1992, Magnetic resonance in medicine.
[11] A. Macovski,et al. Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.
[12] J. Benedetto,et al. Modern Sampling Theory: Mathematics and Applications , 2012 .
[13] Dwight G Nishimura,et al. Design and analysis of a practical 3D cones trajectory , 2006, Magnetic resonance in medicine.
[14] Stefan Kunis,et al. Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.
[15] Jan Mayer,et al. A numerical evaluation of preprocessing and ILU-type preconditioners for the solution of unsymmetric sparse linear systems using iterative methods , 2009, TOMS.
[16] Leslie Greengard,et al. Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..
[17] Jeffrey A. Fessler,et al. Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..
[18] Justin K. Romberg,et al. Spiral FFT: An efficient method for 3-D FFTS on spiral MRI contours , 2010, 2010 IEEE International Conference on Image Processing.
[19] Gabriele Steidl,et al. A note on fast Fourier transforms for nonequispaced grids , 1998, Adv. Comput. Math..
[20] Michael Elad,et al. Accurate and fast discrete polar Fourier transform , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.
[21] J. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .
[22] L. Rabiner,et al. The chirp z-transform algorithm , 1969 .
[23] M. Fenn,et al. On the computation of the polar FFT , 2007 .
[24] Gabriele Steidl,et al. Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .
[25] J. D. O'Sullivan,et al. A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography , 1985, IEEE Transactions on Medical Imaging.