Determining cell-type abundance and expression from bulk tissues with digital cytometry

[1]  R. Dahlstrom,et al.  Challenges and opportunities , 2021, Foundations of a Sustainable Economy.

[2]  S. Schwartz Faculty Opinions recommendation of Comprehensive single-cell transcriptional profiling of a multicellular organism. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[3]  R. Irizarry,et al.  Missing data and technical variability in single‐cell RNA‐sequencing experiments , 2018, Biostatistics.

[4]  E. King,et al.  Pan-cancer deconvolution of tumour composition using DNA methylation , 2018, Nature Communications.

[5]  P. Carmeliet,et al.  Phenotype molding of stromal cells in the lung tumor microenvironment , 2018, Nature Medicine.

[6]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[7]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[8]  Steven J. M. Jones,et al.  The Immune Landscape of Cancer , 2018, Immunity.

[9]  B. Nadel,et al.  Germinal Center Program De-Synchronization and Intra-Patient Heterogeneity in Follicular Lymphoma B-Cells Revealed By Integrative Single-Cell Analysis , 2017 .

[10]  Shawn M. Gillespie,et al.  Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer , 2017, Cell.

[11]  Wei Lu,et al.  Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration , 2017, bioRxiv.

[12]  T. Lappalainen,et al.  Associating cellular epigenetic models with human phenotypes , 2017, Nature Reviews Genetics.

[13]  Sandrine Dudoit,et al.  Normalizing single-cell RNA sequencing data: challenges and opportunities , 2017, Nature Methods.

[14]  Dingding Han,et al.  Comprehensive transcriptome analysis of neocortical layers in humans, chimpanzees and macaques , 2017, Nature Neuroscience.

[15]  Edda Klipp,et al.  Estimation of immune cell content in tumour tissue using single-cell RNA-seq data , 2017, Nature Communications.

[16]  M. Newton,et al.  SCnorm: robust normalization of single-cell RNA-seq data , 2017, Nature Methods.

[17]  D. Speiser,et al.  Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data , 2017, bioRxiv.

[18]  A. Butte,et al.  xCell: digitally portraying the tissue cellular heterogeneity landscape , 2017, bioRxiv.

[19]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[20]  R. Moniz,et al.  Effect of cryopreservation on delineation of immune cell subpopulations in tumor specimens as determinated by multiparametric single cell mass cytometry analysis , 2017, BMC Immunology.

[21]  Arun Ahuja,et al.  Somatic Mutations and Neoepitope Homology in Melanomas Treated with CTLA-4 Blockade , 2016, Cancer Immunology Research.

[22]  Adrian V. Lee,et al.  Epigenomic Deconvolution of Breast Tumors Reveals Metabolic Coupling between Constituent Cell Types. , 2016, Cell reports.

[23]  A. Regev,et al.  Revealing the vectors of cellular identity with single-cell genomics , 2016, Nature Biotechnology.

[24]  Samuel L. Wolock,et al.  A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. , 2016, Cell systems.

[25]  P. Laurent-Puig,et al.  Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression , 2016, Genome Biology.

[26]  D. M. Smith,et al.  Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes , 2016, Cell metabolism.

[27]  L. Nardo,et al.  Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. , 2016, The Journal of clinical investigation.

[28]  L. Chin,et al.  Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. , 2016, Cancer discovery.

[29]  Ash A. Alizadeh,et al.  High-throughput genomic profiling of tumor-infiltrating leukocytes. , 2016, Current opinion in immunology.

[30]  Howard Y. Chang,et al.  Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution , 2016, Nature Genetics.

[31]  Stephen R. Piccolo,et al.  A cloud-based workflow to quantify transcript-expression levels in public cancer compendia , 2016, Scientific Reports.

[32]  Ana C Anderson,et al.  Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. , 2016, Immunity.

[33]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[34]  M. Atkins,et al.  Advances in immunotherapy for melanoma , 2016, BMC Medicine.

[35]  S. Gabriel,et al.  Genomic correlates of response to CTLA-4 blockade in metastatic melanoma , 2015, Science.

[36]  Jen Jen Yeh,et al.  Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma , 2015, Nature Genetics.

[37]  E. Wherry,et al.  Molecular and cellular insights into T cell exhaustion , 2015, Nature Reviews Immunology.

[38]  Ash A. Alizadeh,et al.  Abstract PR09: The prognostic landscape of genes and infiltrating immune cells across human cancers , 2015 .

[39]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[40]  Pornpimol Charoentong,et al.  Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy , 2015, Genome Biology.

[41]  Ash A. Alizadeh,et al.  Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation , 2015, Proceedings of the National Academy of Sciences.

[42]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[43]  J. Wolchok,et al.  Immune Checkpoint Blockade in Cancer Therapy. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[44]  H. Dvinge,et al.  Sample processing obscures cancer-specific alterations in leukemic transcriptomes , 2014, Proceedings of the National Academy of Sciences.

[45]  R. Emerson,et al.  PD-1 blockade induces responses by inhibiting adaptive immune resistance , 2014, Nature.

[46]  S. H. van der Burg,et al.  Anti–CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response , 2014, Science Translational Medicine.

[47]  Steven J. M. Jones,et al.  Comprehensive molecular profiling of lung adenocarcinoma , 2014, Nature.

[48]  Ash A. Alizadeh,et al.  Active idiotypic vaccination versus control immunotherapy for follicular lymphoma. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[49]  Kun Huang,et al.  MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples , 2014, Bioinform..

[50]  S. Shen-Orr,et al.  Computational deconvolution: extracting cell type-specific information from heterogeneous samples. , 2013, Current opinion in immunology.

[51]  Renaud Gaujoux,et al.  CellMix: a comprehensive toolbox for gene expression deconvolution , 2013, Bioinform..

[52]  Andrea J. Goldsmith,et al.  A Self-Directed Method for Cell-Type Identification and Separation of Gene Expression Microarrays , 2013, PLoS Comput. Biol..

[53]  Wenyi Wang,et al.  DeMix: deconvolution for mixed cancer transcriptomes using raw measured data , 2013, Bioinform..

[54]  M. Calaminici,et al.  Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[55]  Quaid Morris,et al.  Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction , 2013, Genome Medicine.

[56]  Zhandong Liu,et al.  Digital sorting of complex tissues for cell type-specific gene expression profiles , 2013, BMC Bioinformatics.

[57]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[58]  Donavan T. Cheng,et al.  Expression Profiling of Human Immune Cell Subsets Identifies miRNA-mRNA Regulatory Relationships Correlated with Cell Type Specific Expression , 2012, PloS one.

[59]  Zhandong Liu,et al.  Gene expression deconvolution in linear space , 2011, Nature Methods.

[60]  Eva K. Lee,et al.  Systems Biology of Seasonal Influenza Vaccination in Humans , 2011, Nature Immunology.

[61]  Pedro Romero,et al.  Exhaustion of tumor-specific CD8⁺ T cells in metastases from melanoma patients. , 2011, The Journal of clinical investigation.

[62]  Mark M. Davis,et al.  Cell type–specific gene expression differences in complex tissues , 2010, Nature Methods.

[63]  M. Jourdan,et al.  An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. , 2009, Blood.

[64]  Z. Modrušan,et al.  Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus , 2009, PloS one.

[65]  R. Dalla‐Favera,et al.  Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma , 2009, Nature.

[66]  L. Staudt,et al.  Stromal gene signatures in large-B-cell lymphomas. , 2008, The New England journal of medicine.

[67]  Jeffrey T. Chang,et al.  Oncogenic pathway signatures in human cancers as a guide to targeted therapies , 2006, Nature.

[68]  J. Fridlyand,et al.  Distinct sets of genetic alterations in melanoma. , 2005, The New England journal of medicine.

[69]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Alexander R. Abbas,et al.  Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data , 2005, Genes and Immunity.

[71]  Ash A. Alizadeh,et al.  Individuality and variation in gene expression patterns in human blood , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[73]  Hugues Bersini,et al.  Separation of samples into their constituents using gene expression data , 2001, ISMB.

[74]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[75]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[76]  Ash A. Alizadeh,et al.  SUPPLEMENTARY NOTE , 1879, Botanical Gazette.

[77]  O. Elemento,et al.  CREBBP Inactivation Promotes the Development of HDAC3-Dependent Lymphomas. , 2017, Cancer discovery.

[78]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[79]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[80]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.