Statistical Model Checking for Markov Decision Processes

Statistical Model Checking (SMC) is a computationally very efficient verification technique based on selective system sampling. One well identified shortcoming of SMC is that, unlike probabilistic model checking, it cannot be applied to systems featuring nondeterminism, such as Markov Decision Processes (MDP). We address this limitation by developing an algorithm that resolves nondeterminism probabilistically, and then uses multiple rounds of sampling and Reinforcement Learning to provably improve resolutions of nondeterminism with respect to satisfying a Bounded Linear Temporal Logic (BLTL) property. Our algorithm thus reduces an MDP to a fully probabilistic Markov chain on which SMC may be applied to give an approximate solution to the problem of checking the probabilistic BLTL property. We integrate our algorithm in a parallelised modification of the PRISM simulation framework. Extensive validation with both new and PRISM benchmarks demonstrates that the approach scales very well in scenarios where symbolic algorithms fail to do so.

[1]  Stephan Merz,et al.  Model Checking , 2000 .

[2]  Holger Hermanns,et al.  Partial Order Methods for Statistical Model Checking and Simulation , 2011, FMOODS/FORTE.

[3]  Joost-Pieter Katoen,et al.  A Markov reward model checker , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[4]  Samik Basu,et al.  A bounded statistical approach for model checking of unbounded until properties , 2010, ASE.

[5]  Stanley J. Rosenschein,et al.  Learning to act using real-time dynamic programming , 1996 .

[6]  Nihal Pekergin,et al.  Statistical Model Checking Using Perfect Simulation , 2009, ATVA.

[7]  Elisabetta Di Nitto,et al.  Proceedings of the IEEE/ACM international conference on Automated software engineering , 2010, ASE 2010.

[8]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[9]  Christel Baier,et al.  Validation of Stochastic Systems , 2004, Lecture Notes in Computer Science.

[10]  Frank Ciesinski,et al.  On Probabilistic Computation Tree Logic , 2004, Validation of Stochastic Systems.

[11]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[12]  Steven I. Marcus,et al.  A survey of some simulation-based algorithms for Markov decision processes , 2007, Commun. Inf. Syst..

[13]  Michael Brian Schiffer If at First You Don’t Succeed … , 2008 .

[14]  Christel Baier,et al.  Symbolic Model Checking for Probabilistic Processes , 1997, ICALP.

[15]  Håkan L. S. Younes,et al.  Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling , 2002, CAV.

[16]  Edmund M. Clarke,et al.  Bayesian statistical model checking with application to Stateflow/Simulink verification , 2010, Formal Methods in System Design.

[17]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[18]  Richard Lassaigne,et al.  Approximate Verification of Probabilistic Systems , 2002, PAPM-PROBMIV.

[19]  Joost-Pieter Katoen,et al.  Counterexamples in Probabilistic Model Checking , 2007, TACAS.

[20]  Mahesh Viswanathan,et al.  Statistical Model Checking of Black-Box Probabilistic Systems , 2004, CAV.

[21]  Masahiro Fujita,et al.  Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation , 1997, Formal Methods Syst. Des..

[22]  Håkan L. S. Younes,et al.  Statistical Verification of Probabilistic Properties with Unbounded Until , 2010, SBMF.

[23]  Christel Baier,et al.  LiQuor: A tool for Qualitative and Quantitative Linear Time analysis of Reactive Systems , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[24]  Richard Lassaigne,et al.  Approximate planning and verification for large Markov decision processes , 2012, SAC '12.

[25]  Sergio Giro,et al.  Undecidability Results for Distributed Probabilistic Systems , 2009, SBMF.

[26]  Gilles Brassard,et al.  Algorithmics - theory and practice , 1988 .

[27]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[28]  Håkan L. S. Younes Ymer: A Statistical Model Checker , 2005, CAV.

[29]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[30]  A. Fleischmann Distributed Systems , 1994, Springer Berlin Heidelberg.

[31]  Richard S. Sutton,et al.  Reinforcement Learning with Replacing Eligibility Traces , 2005, Machine Learning.

[32]  Richard Lassaigne,et al.  Probabilistic verification and approximation , 2008, Ann. Pure Appl. Log..

[33]  Mahesh Viswanathan,et al.  VESTA: A statistical model-checker and analyzer for probabilistic systems , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[34]  Luca de Alfaro,et al.  Symbolic Model Checking of Probabilistic Processes Using MTBDDs and the Kronecker Representation , 2000, TACAS.

[35]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..