Phase selection and mechanical properties of directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy

[1]  Ling Qiao,et al.  A focused review on machine learning aided high-throughput methods in high entropy alloy , 2021 .

[2]  H. Su,et al.  Peritectic reaction during directional solidification in a Ru-containing nickel-based single crystal superalloy , 2021, Journal of Alloys and Compounds.

[3]  Yanfei Gao,et al.  Mechanical behavior of high-entropy alloys , 2021, Progress in Materials Science.

[4]  P. Peng,et al.  Thermosolutal convection-induced freckle formation in steady and unsteady directional solidification: Analysis in Sn-Ni peritectic alloy , 2021 .

[5]  H. Su,et al.  Solidification characteristics and as-cast microstructures of a Ru-containing nickel-based single crystal superalloy , 2021 .

[6]  Jianqiu Zhou,et al.  A quantitative understanding on the mechanical behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy , 2021 .

[7]  B. Cantor Multicomponent high-entropy Cantor alloys , 2020, Progress in Materials Science.

[8]  P. Peng,et al.  Phase transition and nano-mechanical properties of directionally solidified Sn–Co peritectic alloy , 2021 .

[9]  P. Peng,et al.  Phase selection and nano-mechanical properties of intermetallic compounds in directionally solidified Cu-68at.%Sn peritectic alloy , 2020 .

[10]  P. Liaw,et al.  Promising properties and future trend of eutectic high entropy alloys , 2020, Scripta Materialia.

[11]  Xue-Hui Yan,et al.  Functional properties and promising applications of high entropy alloys , 2020 .

[12]  Shijian Zheng,et al.  High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure , 2020 .

[13]  M. Barnett,et al.  Towards the large-scale production and strength prediction of near-eutectic AlxCoCrFeNi2.1 alloys by additive manufacturing , 2020 .

[14]  V. Gopinath,et al.  A review on the steels, alloys/high entropy alloys, composites and coatings used in high temperature wear applications , 2020 .

[15]  Xi Li,et al.  Microstructure, Crystallographic Orientation and Mechanical Property in AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Under Magnetic Field-Assisted Directional Solidification , 2020, Metallurgical and Materials Transactions A.

[16]  Ruirun Chen,et al.  Microstructure evolution and mechanical property of directionally solidified CoCrFeMnNi high entropy alloy , 2020 .

[17]  Pei Wang,et al.  Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates , 2020, Journal of Materials Science & Technology.

[18]  Guojun Zhang,et al.  Microstructures and room temperature tensile properties of as-cast and directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy , 2020 .

[19]  S. Mukherjee,et al.  Small-scale mechanical behavior of a eutectic high entropy alloy , 2020, Scientific Reports.

[20]  P. Peng,et al.  Competitive growth of leading phase and tensile properties of directionally solidified eutectic Al–Ni alloy , 2020 .

[21]  Ji-Jung Kai,et al.  A casting eutectic high entropy alloy with superior strength-ductility combination , 2019, Materials Letters.

[22]  Ruirun Chen,et al.  Phase separation of AlCoCrFeNi2.1 eutectic high-entropy alloy during directional solidification and their effect on tensile properties , 2019, Intermetallics.

[23]  Juan Xu,et al.  Microstructure, mechanical properties and corrosion resistance of CoCrFeNiW (x = 0, 0.2, 0.5) high entropy alloys , 2019, Intermetallics.

[24]  N. Tsuji,et al.  Nanostructuring with Structural-Compositional Dual Heterogeneities Enhances Strength-Ductility Synergy in Eutectic High Entropy Alloy , 2019, Scientific Reports.

[25]  Tongmin Wang,et al.  Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability , 2019, Scripta Materialia.

[26]  I. Baker,et al.  Eutectic/eutectoid multi-principle component alloys: A review , 2019, Materials Characterization.

[27]  Yajie Guo,et al.  Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys , 2018 .

[28]  Jianqing Jiang,et al.  Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys , 2018 .

[29]  Lin Liu,et al.  Microstructure and mechanical properties of Al0.7CoCrFeNi high-entropy-alloy prepared by directional solidification , 2018 .

[30]  Jun Wang,et al.  Microstructure characterization of CoCrFeNiMnPdx eutectic high-entropy alloys , 2018 .

[31]  Peter K. Liaw,et al.  Science and technology in high-entropy alloys , 2018, Science China Materials.

[32]  S. Praveen,et al.  High‐Entropy Alloys: Potential Candidates for High‐Temperature Applications – An Overview , 2018 .

[33]  B. Zhang,et al.  Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy , 2017 .

[34]  Jianqing Jiang,et al.  Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys , 2017 .

[35]  J. Qiao,et al.  Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy , 2017 .

[36]  P. Liaw,et al.  Corrosion-resistant high-entropy alloys: A review , 2017 .

[37]  Sheng Guo,et al.  Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range , 2017 .

[38]  Jiang Wang,et al.  Microstructure evolution and room temperature fracture toughness of directionally solidified NiAl–31Cr3Mo–0.2Si near-eutectic alloy at different withdrawal rates , 2016 .

[39]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[40]  N. Tsuji,et al.  Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing , 2016 .

[41]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[42]  Huijun Kang,et al.  A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys , 2014, Scientific Reports.

[43]  Sheng Guo,et al.  Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys , 2013 .

[44]  H. Fu,et al.  Research on lamellar structure and microhardness in directionally solidified ternary Sn–40.5Pb–2.6Sb eutectic alloy , 2010 .

[45]  Mustafa Gündüz,et al.  Dependency of microindentation hardness on solidification processing parameters and cellular spacing in the directionally solidified Al based alloys , 2009 .

[46]  M. Plapp,et al.  Stability of lamellar eutectic growth , 2008 .

[47]  R. Caram,et al.  Directional solidification processing of eutectic alloys in the Ni–Al–V system , 2000 .

[48]  W. Kurz,et al.  Directional solidification and phase equilibria in the Ni-Al system , 1999 .

[49]  W. Kurz,et al.  Phase selection during solidification of peritectic alloys , 1996 .

[50]  R. Trivedi,et al.  Eutectic growth: A modification of the Jackson and Hunt theory , 1991 .

[51]  J. Hunt,et al.  Lamellar and Rod Eutectic Growth , 1988 .