Integrated Stochastic and Deterministic Sensitivity Analysis: Correlating Variability of Design Parameters with Cell and Stack Performance

Integrating stochastic and deterministic measures, this chapter carries out sensitivity analysis to correlate the variability of design parameters (including geometrical parameters, material properties, and physical parameters) with single-cell and stack performances in Sects. 6.2 and 6.3, respectively.

[1]  Yixiang Shi,et al.  Modeling of an anode-supported Ni–YSZ|Ni–ScSZ|ScSZ|LSM–ScSZ multiple layers SOFC cell: Part I. Experiments, model development and validation , 2007 .

[2]  E. Ivers-Tiffée,et al.  3D finite element model for reconstructed mixed-conducting cathodes: II. Parameter sensitivity analysis , 2012 .

[3]  Ioannis K. Kookos,et al.  Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells , 2012 .

[4]  S. S. Shy,et al.  Parametric study of anodic microstructures to cell performance of planar solid oxide fuel cell using measured porous transport properties , 2010 .

[5]  Ibrahim Dincer,et al.  Multi‐component mathematical model of solid oxide fuel cell anode , 2005 .

[6]  P. O'Connor,et al.  Practical Reliability Engineering , 1981 .

[7]  Bengt Sundén,et al.  Three dimensional modeling of an solid oxide fuel cell coupling charge transfer phenomena with transport processes and heat generation , 2013 .

[8]  Patrick D. T. O'Connor,et al.  Practical Reliability Engineering: O'Connor/Practical Reliability Engineering , 2011 .

[9]  M. Hussain Multi-Component and Multi-Dimensional Mathematical Modeling of Solid Oxide Fuel Cells , 2008 .

[10]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .

[11]  Fausto Arpino,et al.  A robust model and numerical approach for solving solid oxide fuel cell (SOFC) problems , 2008 .

[12]  Ibrahim Dincer,et al.  A numerical investigation of modeling an SOFC electrode as two finite layers , 2009 .

[13]  Bengt Sundén,et al.  Transport phenomena in fuel cells , 2005, Hydrogen, Batteries and Fuel Cells.

[14]  Jan Van herle,et al.  Design of experiment approach applied to reducing and oxidizing tolerance of anode supported solid o , 2011 .

[15]  Hua Li,et al.  Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack , 2014 .

[16]  Dennis Y.C. Leung,et al.  Electrochemical modeling and parametric study of methane fed solid oxide fuel cells , 2009 .

[17]  Jeffrey W. Fergus,et al.  Solid Oxide Fuel Cells : Materials Properties and Performance , 2016 .

[18]  Mustafa Y. Ata Determining the Optimal Sample Size in the Monte Carlo Experiments , 2006 .

[19]  Ellen Ivers-Tiffée,et al.  3D finite element model for reconstructed mixed-conducting cathodes: I. Performance quantification , 2012 .

[20]  Guilan Wang,et al.  3-D model of thermo-fluid and electrochemical for planar SOFC , 2007 .

[21]  Xingjian Xue,et al.  Mathematical Modeling Analysis of Regenerative Solid Oxide Fuel Cells in Switching Mode Conditions , 2010 .

[22]  S. Chan,et al.  Anode Micro Model of Solid Oxide Fuel Cell , 2001 .

[23]  Meng Ni,et al.  2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell , 2010 .

[24]  D. Jeon,et al.  A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells , 2006 .

[25]  A. Chaisantikulwat,et al.  Dynamic modelling and control of planar anode-supported solid oxide fuel cell , 2008, Comput. Chem. Eng..

[26]  Paola Costamagna,et al.  Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization , 1998 .

[27]  Lin Ma,et al.  Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes , 2010 .

[28]  Stefano Ubertini,et al.  Modeling Solid Oxide Fuel Cells: Methods, Procedures and Techniques , 2014 .

[29]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[30]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[31]  Mustafa Fazil Serincan,et al.  Computational Thermal-Fluid Analysis of a Microtubular Solid Oxide Fuel Cell , 2008 .

[32]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[33]  R. Kee,et al.  A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies , 2003 .

[34]  B. Sundén,et al.  SOFC Cell Design Optimization Using the Finite Element Method Based CFD Approach , 2014 .

[35]  Jiju Antony,et al.  Design of experiments for engineers and scientists , 2003 .

[36]  I. Dincer,et al.  Mathematical modeling of planar solid oxide fuel cells , 2006 .

[37]  Yixiang Shi,et al.  Modeling of an anode-supported Ni-YSZ|Ni-ScSZ|ScSZ| LSM-ScSZ multiple layers SOFC cell: Part II. Simulations and discussion , 2007 .

[38]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[39]  D. Leung,et al.  Parametric study of solid oxide fuel cell performance , 2007 .

[40]  W. Hays Statistics, 4th ed. , 1988 .

[41]  Hua Li,et al.  Spatially smoothed fuel cell models: Variability of dependent variables underneath flow fields , 2014 .

[42]  Stphane Tuffry,et al.  Data Mining and Statistics for Decision Making , 2011 .