Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction

The practical use of solid-state nanopores for DNA sequencing requires easy fabrication of the nanopores, reduction of the DNA movement speed and reduction of the ionic current noise. Here, we report an integrated nanopore platform with a nanobead structure that decelerates DNA movement and an insulating polyimide layer that reduces noise. To enable rapid nanopore fabrication, we introduced a controlled dielectric breakdown (CDB) process into our system. DNA translocation experiments revealed that single nanopores were created by the CDB process without sacrificing performance in reducing DNA movement speed by up to 10 μs/base or reducing noise up to 600 pArms at 1 MHz. Our platform provides the essential components for proceeding to the next step in the process of DNA sequencing.

[1]  Aleksei Aksimentiev,et al.  Slowing down DNA translocation through a nanopore in lithium chloride. , 2012, Nano letters.

[2]  K. Shepard,et al.  Integrated nanopore sensing platform with sub-microsecond temporal resolution , 2012, Nature Methods.

[3]  Mark Akeson,et al.  Automated Forward and Reverse Ratcheting of DNA in a Nanopore at Five Angstrom Precision1 , 2012, Nature Biotechnology.

[4]  C Raillon,et al.  Fast and automatic processing of multi-level events in nanopore translocation experiments. , 2012, Nanoscale.

[5]  Charles R. Martin,et al.  Resistive-Pulse SensingFrom Microbes to Molecules , 2000 .

[6]  A. Meller,et al.  Detection of urea-induced internal denaturation of dsDNA using solid-state nanopores , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[8]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[9]  Itaru Yanagi,et al.  Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure , 2015, Scientific Reports.

[10]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Tomio Iwasaki,et al.  Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter , 2014, Nanotechnology.

[12]  Kyle Briggs,et al.  Nanopore Fabrication by Controlled Dielectric Breakdown , 2014, PloS one.

[13]  A. Balan,et al.  Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. , 2013, ACS nano.

[14]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[15]  M. Wanunu Nanopores: A journey towards DNA sequencing. , 2012, Physics of Life Reviews.

[16]  Min Jun Kim,et al.  Detection of long and short DNA using nanopores with graphitic polyhedral edges. , 2013, ACS nano.

[17]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[18]  G. Slater,et al.  Interfacing solid‐state nanopores with gel media to slow DNA translocations , 2015, Electrophoresis.

[19]  Tamas Szalay,et al.  De novo sequencing and variant calling with nanopores using PoreSeq , 2015, Nature Biotechnology.

[20]  R. Bashir,et al.  Slowing DNA Transport Using Graphene–DNA Interactions , 2015, Advanced functional materials.

[21]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[22]  Aleksei Aksimentiev,et al.  Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix , 2010, Nanotechnology.

[23]  H. Bayley,et al.  Individual RNA base recognition in immobilized oligonucleotides using a protein nanopore. , 2012, Nano letters.

[24]  Cees Dekker,et al.  Fast translocation of proteins through solid state nanopores. , 2013, Nano letters.

[25]  I. Derrington,et al.  Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA , 2013, Proceedings of the National Academy of Sciences.

[26]  Itaru Yanagi,et al.  Prevention of Dielectric Breakdown of Nanopore Membranes by Charge Neutralization , 2015, Scientific Reports.

[27]  Kyle Briggs,et al.  Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. , 2014, Small.

[28]  Jay Shendure,et al.  Decoding long nanopore sequencing reads of natural DNA , 2014, Nature Biotechnology.

[29]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[30]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[31]  Jacob K Rosenstein,et al.  Slow DNA transport through nanopores in hafnium oxide membranes. , 2013, ACS nano.

[32]  Charles M. Lieber,et al.  Local electrical potential detection of DNA by nanowire-nanopore sensors , 2011, Nature nanotechnology.

[33]  Rena Akahori,et al.  Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection , 2014, Scientific Reports.

[34]  Benedict Paten,et al.  Improved data analysis for the MinION nanopore sequencer , 2015, Nature Methods.

[35]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[36]  Sanmeet S. Chahal,et al.  Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution , 2015, Nanotechnology.

[37]  Amit Meller,et al.  A nanopore-nanofiber mesh biosensor to control DNA translocation. , 2013, Journal of the American Chemical Society.

[38]  Cees Dekker,et al.  Temperature dependence of DNA translocations through solid-state nanopores , 2015, Nanotechnology.

[39]  Qing Zhao,et al.  Gel mesh as "brake" to slow down DNA translocation through solid-state nanopores. , 2015, Nanoscale.

[40]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.