Mapping and assessing of urban impervious areas using multiple endmember spectral mixture analysis: a case study in the city of Tampa, Florida

The advance in remote sensing technology makes people easily assess urban growth. In this study, a multiple endmember spectral mixture analysis (MESMA) was examined in a sub-pixel analysis of Landsat Thematic Mapper (TM) imagery to map three physical components of urban land cover (LC): impervious surface, vegetation and soil, and compared with a traditional spectral mixture analysis (SMA) in mapping the physical components. A comparative analysis of the impervious surface areas (ISA) mapped with MESMA and SMA indicates that MESMA produced more accurately results of mapping urban physical components than those by SMA. With the multiyear Landsat TM data, we quantified sub-pixel percentage of ISA and the percentage of ISA changes to assess urban growth in Tampa, FL during the past 20 years. The experimental results demonstrate that MESMA approach is effective in mapping and monitoring urban land use/LC changes using moderate-resolution multispectral imagery at a sub-pixel level.

[1]  Alan R. Gillespie,et al.  Vegetation in deserts. I - A regional measure of abundance from multispectral images. II - Environmental influences on regional abundance , 1990 .

[2]  B. Turner,et al.  Land use and land cover in global environmental change: considerations for study , 1991 .

[3]  P. Gong,et al.  Application of satellite and GIS technologies for land-cover and land-use mapping at the rural-urban fringe : A case study , 1992 .

[4]  John B. Adams,et al.  Quantitative subpixel spectral detection of targets in multispectral images. [terrestrial and planetary surfaces] , 1992 .

[5]  K. Green,et al.  Using remote sensing to detect and monitor land-cover and land-use change , 1994 .

[6]  John B. Adams,et al.  Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon , 1995 .

[7]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[8]  M. Ridd Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities , 1995 .

[9]  C. Arnold,et al.  IMPERVIOUS SURFACE COVERAGE: THE EMERGENCE OF A KEY ENVIRONMENTAL INDICATOR , 1996 .

[10]  S. Barr,et al.  INFERRING URBAN LAND USE FROM SATELLITE SENSOR IMAGES USING KERNEL-BASED SPATIAL RECLASSIFICATION , 1996 .

[11]  James H. Everitt,et al.  Mapping leafy spurge (euphorbia esula) infestations using aerial photography and geographic information systems , 1996 .

[12]  D. Civco,et al.  IMPERVIOUS SURFACE MAPPING FOR THE STATE OF CONNECTICUT 1 , 1997 .

[13]  S. Tompkins,et al.  Optimization of endmembers for spectral mixture analysis , 1997 .

[14]  Stephen V. Stehman,et al.  Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles , 1998 .

[15]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[16]  Gail A. Carpenter,et al.  A Neural Network Method for Mixture Estimation for Vegetation Mapping , 1999 .

[17]  J. R. Jensen,et al.  Effectiveness of Subpixel Analysis in Detecting and Quantifying Urban Imperviousness from Landsat Thematic Mapper Imagery , 1999 .

[18]  D. Peddle Spectral Mixture Analysis and Geometric-Optical Reflectance Modeling of Boreal Forest Biophysical Structure , 1999 .

[19]  Duncan Black,et al.  A Theory of Urban Growth , 1999, Journal of Political Economy.

[20]  Shupeng Chen,et al.  Remote sensing and GIS for urban growth analysis in China , 2000 .

[21]  D. Lobell,et al.  Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. , 2000 .

[22]  Alan T. Murray,et al.  Monitoring Growth in Rapidly Urbanizing Areas Using Remotely Sensed Data , 2000 .

[23]  C. Small Estimation of urban vegetation abundance by spectral mixture analysis , 2001 .

[24]  Sachio Kubo,et al.  Appraising the anatomy and spatial growth of the Bangkok Metropolitan area using a vegetation-impervious-soil model through remote sensing , 2001 .

[25]  W. Zipperer,et al.  Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas , 2001 .

[26]  D. Roberts,et al.  Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments , 2001 .

[27]  Ming-Chih Hung,et al.  URBAN LAND COVER ANALYSIS FROM SATELLITE IMAGES , 2002 .

[28]  C. Small,et al.  A global analysis of urban reflectance , 2005 .

[29]  Daniel L. Civco,et al.  Quantifying and Describing Urbanizing Landscapes in the Northeast United States , 2002 .

[30]  Qihao Weng Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. , 2002, Journal of environmental management.

[31]  C. Small Multitemporal analysis of urban reflectance , 2002 .

[32]  C. Woodcock,et al.  Monitoring land-use change in the Pearl River Delta using Landsat TM , 2002 .

[33]  Alan T. Murray,et al.  Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques , 2002 .

[34]  Jeffrey S. Wilson,et al.  Evaluating environmental influences of zoning in urban ecosystems with remote sensing , 2003 .

[35]  Conghe Song,et al.  Monitoring forest succession with multitemporal Landsat images: factors of uncertainty , 2003, IEEE Trans. Geosci. Remote. Sens..

[36]  John F. Mustard,et al.  Highland contamination in lunar mare soils: Improved mapping with multiple end-member spectral mixture analysis (MESMA) , 2003 .

[37]  Limin Yang,et al.  An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+ and high spatial resolution imagery , 2003 .

[38]  K. Seto,et al.  Comparing ARTMAP Neural Network with the Maximum-Likelihood Classifier for Detecting Urban Change , 2003 .

[39]  Limin Yang,et al.  Urban Land-Cover Change Detection through Sub-Pixel Imperviousness Mapping Using Remotely Sensed Data , 2003 .

[40]  Martin Herold,et al.  The spatiotemporal form of urban growth: measurement, analysis and modeling , 2003 .

[41]  E. Kalnay,et al.  Impact of urbanization and land-use change on climate , 2003, Nature.

[42]  D. Roberts,et al.  Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE , 2003 .

[43]  S. Taylor Jarnagin,et al.  Regional and Global Patterns of Population, Land Use, and Land Cover Change: An Overview of Stressors and Impacts , 2004 .

[44]  Changshan Wu,et al.  Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery , 2004 .

[45]  Alan R. Gillespie,et al.  Remote Sensing of Landscapes with Spectral Images: A Physical Modeling Approach , 2004 .

[46]  D. Lu,et al.  Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies , 2004 .

[47]  D. Lu,et al.  Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery , 2004 .

[48]  Margaret E. Gardner,et al.  Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2400 nm , 2004 .

[49]  P. Dare Shadow Analysis in High-Resolution Satellite Imagery of Urban Areas , 2005 .

[50]  D. Peddle,et al.  Spectral mixture analysis of agricultural crops: Endmember validation and biophysical estimation in potato plots , 2005 .

[51]  Richard G. Lathrop,et al.  Sub-pixel estimation of urban land cover components with linear mixture model analysis and Landsat Thematic Mapper imagery , 2005 .

[52]  T. Kemper,et al.  A new tool for variable multiple endmember spectral mixture analysis (VMESMA) , 2005 .

[53]  A. Hastings,et al.  Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data , 2005 .

[54]  Philip A. Townsend,et al.  Land Use – Land Cover Conversion, Regeneration and Degradation in the High Elevation Bolivian Andes , 2006, Landscape Ecology.

[55]  S. Ustin,et al.  Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA, USA , 2005 .

[56]  D. Lu,et al.  Urban classification using full spectral information of landsat ETM+ imagery in Marion County, Indiana , 2005 .

[57]  Conghe Song,et al.  Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? , 2005 .

[58]  George Xian,et al.  Assessments of urban growth in the Tampa Bay watershed using remote sensing data , 2005 .

[59]  Gregory S. Okin,et al.  Mapping North African landforms using continental scale unmixing of MODIS imagery , 2005 .

[60]  Glenn J. Fitzgerald,et al.  Multiple shadow fractions in spectral mixture analysis of a cotton canopy , 2005 .

[61]  R. Tateishi,et al.  Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing , 2006 .

[62]  C. Small,et al.  Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis , 2006 .

[63]  Chein-I Chang,et al.  Pixel purity index-based algorithms for endmember extraction from hyperspectral imagery , 2006 .

[64]  Xuexia Chen,et al.  Spectral mixture analyses of hyperspectral data acquired using a tethered balloon , 2006 .

[65]  William A. Gould,et al.  Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data , 2007 .

[66]  D. Roberts,et al.  Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil , 2007 .

[67]  M. Bauer,et al.  Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery , 2007 .

[68]  Ruiliang Pu,et al.  Spectral mixture analysis for mapping abundance of urban surface components from the Terra/ASTER data , 2008 .

[69]  E. Burgess “The Growth of the City: An Introduction to a Research Project” , 2020, The City Reader.

[70]  P. Garg,et al.  Modelling of urban growth using spatial analysis techniques: a case study of Ajmer city (India) , 2008 .

[71]  A. Jacquin,et al.  A hybrid object-based classification approach for mapping urban sprawl in periurban environment , 2008 .

[72]  Qihao Weng,et al.  A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[73]  D. Lu,et al.  Extraction of urban impervious surfaces from an IKONOS image , 2009 .

[74]  Karl Staenz,et al.  Rangeland monitoring using hyperspectral remote sensing data and spectral mixture analysis , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[75]  Moses Azong Cho,et al.  Multiple endmember spectral-angle-mapper (sam) analysis improves discrimination of savanna tree species , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[76]  S. Myint,et al.  Modelling land‐cover types using multiple endmember spectral mixture analysis in a desert city , 2009 .

[77]  D. Roberts,et al.  Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments , 2009 .

[78]  Bunkei Matsushita,et al.  A pre-screened and normalized multiple endmember spectral mixture analysis for mapping impervious surface area in Lake Kasumigaura Basin, Japan , 2010 .

[79]  Steven A. Margulis,et al.  Investigation of the impacts of vegetation distribution and evaporative cooling on synthetic urban daytime climate using a coupled LES—LSM model , 2011 .

[80]  D. Roberts,et al.  Estimating life-form cover fractions in California sage scrub communities using multispectral remote sensing , 2011 .

[81]  Xiaojun Yang What is Urban Remote Sensing , 2011 .

[82]  Qihao Weng,et al.  Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends , 2012 .

[83]  Simon J. Hook,et al.  Synergies Between VSWIR and TIR Data for the Urban Environment: An Evaluation of the Potential for the Hyperspectral Infrared Imager (HyspIRI) , 2012 .

[84]  Lindi J. Quackenbush,et al.  Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data , 2012 .

[85]  Nathan Moore,et al.  Monitoring rapid urban expansion using a multi-temporal RGB-impervious surface model , 2012 .