Towards a Fully Generic Theory of Data

Modern software systems place a large emphasis on heterogeneous communication. For disparate applications to communicate effectively, a generic theory of data is required that works at the inter-application level. The key feature of such a theory is full generality, where the data model of an application is not restricted to any particular modeling formalism. Existing solutions do not have this property: while any data can be encoded in terms of XML or using the Semantic Web, such representations provide only basic generality, whereby to reason about an arbitrary application's data model it must be re-expressed using the formalism in question. In this paper we present a theory of data which is fully generic and utilizes an extensible design to allow the underlying formalisms to be incorporated into a specification only when necessary. We then show how this theory can be used to investigate two common data equivalence problems - canonicalization and transformation - independently of the datatypes involved.

[1]  Roy T. Fielding,et al.  Uniform Resource Identifiers (URI): Generic Syntax , 1998, RFC.

[2]  J. Michael Spivey,et al.  The Z notation - a reference manual , 1992, Prentice Hall International Series in Computer Science.

[3]  E. F. CODD,et al.  A relational model of data for large shared data banks , 1970, CACM.

[4]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[5]  J. Michael Spivey,et al.  An introduction to Z and formal specifications , 1989, Softw. Eng. J..

[6]  Roy T. Fielding,et al.  Uniform Resource Identifier (URI): Generic Syntax , 2005, RFC.

[7]  김병규,et al.  Canonical XML 알고리즘의 구현 , 2002 .

[8]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[9]  Amit P. Sheth,et al.  Semantic interoperability in global information systems , 1999, SGMD.

[10]  Jeremy J. Carroll,et al.  Resource description framework (rdf) concepts and abstract syntax , 2003 .

[11]  Amit P. Sheth,et al.  Changing Focus on Interoperability in Information Systems:From System, Syntax, Structure to Semantics , 1999 .

[12]  Deborah L. McGuinness,et al.  Owl web ontology language guide , 2003 .

[13]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[14]  C. M. Sperberg-McQueen,et al.  Extensible markup language , 1997 .

[15]  Jonathan Robie,et al.  Editors , 2003 .

[16]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[17]  Donald E. Eastlake,et al.  Exclusive XML Canonicalization, Version 1.0 , 2004, RFC.

[18]  Jim Woodcock,et al.  Using Z - specification, refinement, and proof , 1996, Prentice Hall international series in computer science.

[19]  Donald E. Eastlake,et al.  XML-Signature Syntax and Processing , 2001, RFC.