A hierarchical Bayesian model for frame representation

In many signal processing problems, it may be fruitful to represent the signal under study in a redundant linear decomposition called a frame. If a probabilistic approach is adopted, it becomes then necessary to estimate the hyper-parameters characterizing the probability distribution of the frame coefficients. This problem is difficult since in general, the frame synthesis operator is not bijective and consequently, the frame coefficients are not directly observable. In this work, a hierarchical Bayesian model is introduced to solve this problem. A hybrid MCMC algorithm is subsequently proposed to sample from the derived posterior distribution. We show that through classical Bayesian estimators, this algorithm allows us to determine these hyper-parameters, as well as the frame coefficients in applications to image denoising with uniform noise.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  Patrick L. Combettes,et al.  A forward-backward algorithm for image restoration with sparse representations , 2005 .

[3]  Yong Zhang,et al.  A bounded error estimation approach to image reconstruction , 1992, IEEE Conference on Nuclear Science Symposium and Medical Imaging.

[4]  Max Mignotte,et al.  Fusion of Hidden Markov Random Field Models and Its Bayesian Estimation , 2006, IEEE Transactions on Image Processing.

[5]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[6]  Bruno Torrésani,et al.  A hybrid scheme for encoding audio signal using hidden Markov models of waveforms , 2005, ArXiv.

[7]  Simon J. Godsill,et al.  Sparse linear regression in unions of bases via Bayesian variable selection , 2006, IEEE Signal Processing Letters.

[8]  Alfred O. Hero,et al.  Hierarchical Bayesian Sparse Image Reconstruction With Application to MRFM , 2008, IEEE Transactions on Image Processing.

[9]  J B Poline,et al.  Joint detection-estimation of brain activity in functional MRI: a Multichannel Deconvolution solution , 2005, IEEE Transactions on Signal Processing.

[10]  Thomas M. Breuel,et al.  Finding lines under bounded error , 1996, Pattern Recognit..

[11]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[12]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[13]  Dominique Pastor,et al.  Algebraic quantization of transform coefficients for embedded audio coding , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[14]  Ahmed H. Tewfik,et al.  A sparse solution to the bounded subset selection problem: a network flow model approach , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[15]  E. Candès,et al.  Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .

[16]  Amy E. Bell,et al.  New image compression techniques using multiwavelets and multiwavelet packets , 2001, IEEE Trans. Image Process..

[17]  John D. Villasenor,et al.  Visibility of wavelet quantization noise , 1997, IEEE Transactions on Image Processing.

[18]  Sundeep Rangan,et al.  Recursive consistent estimation with bounded noise , 2001, IEEE Trans. Inf. Theory.

[19]  Aggelos K. Katsaggelos,et al.  Fast bayesian compressive sensing using Laplace priors , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[20]  Olivier Cappé A Bayesian approach for simultaneous segmentation and classification of count data , 2002, IEEE Trans. Signal Process..

[21]  Ronald R. Coifman,et al.  Wavelet analysis and signal processing , 1990 .

[22]  S. Mallat A wavelet tour of signal processing , 1998 .

[23]  Matthias W. Seeger,et al.  Compressed sensing and Bayesian experimental design , 2008, ICML '08.

[24]  Caroline Chaux,et al.  Image analysis using a dual-tree M-band wavelet transform , 2006, IEEE Transactions on Image Processing.

[25]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[26]  Bruno Torrésani,et al.  Random Models for Sparse Signals Expansion on Unions of Bases With Application to Audio Signals , 2008, IEEE Transactions on Signal Processing.

[27]  Petar M. Djuric,et al.  Model selection by MCMC computation , 2001, Signal Process..

[28]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[29]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[30]  Matthias Bethge,et al.  Bayesian Inference for Sparse Generalized Linear Models , 2007, ECML.

[31]  Brani Vidakovic,et al.  MCMC Methods in Wavelet Shrinkage: Non-Equally Spaced Regression, Density and Spectral Density Estimation , 1999 .

[32]  Hideki Kawahara,et al.  Signal reconstruction from modified auditory wavelet transform , 1993, IEEE Trans. Signal Process..

[33]  Amel Benazza-Benyahia,et al.  Autocalibrated regularized parallel mri reconstruction in the wavelet domain , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[34]  Ali Mohammad-Djafari,et al.  Wavelet domain blind image separation , 2003, SPIE Optics + Photonics.

[35]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[36]  Gabriel Huerta,et al.  Multivariate Bayes Wavelet shrinkage and applications , 2005 .

[37]  Josiane Zerubia,et al.  Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method , 2002, Pattern Recognit..

[38]  Mike E. Davies,et al.  Monte Carlo Methods for Adaptive Sparse Approximations of Time-Series , 2007, IEEE Transactions on Signal Processing.

[39]  Simon J. Godsill,et al.  Bayesian Estimation of Time-Frequency Coefficients for Audio Signal Enhancement , 2002, NIPS.

[40]  D. Song,et al.  Lp-NORM UNIFORM DISTRIBUTION , 1996 .

[41]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[42]  David Leporini,et al.  Bayesian wavelet denoising: Besov priors and non-Gaussian noises , 2001, Signal Process..

[43]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Eric L. Miller Efficient computational methods for wavelet domain signal restoration problems , 1999, IEEE Trans. Signal Process..

[45]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..

[46]  Michael W. Marcellin,et al.  Comparison of different methods of classification in subband coding of images , 1997, IEEE Trans. Image Process..

[47]  Stéphane Mallat,et al.  Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.

[48]  Valérie R. Wajs,et al.  A variational formulation for frame-based inverse problems , 2007 .

[49]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[50]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[51]  P. Moulin,et al.  Analysis of multiresolution image denoising schemes using generalized-Gaussian priors , 1998, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380).