Gaseous bradykinin and its singly, doubly, and triply protonated forms: a first-principles study.

The conformers of gaseous bradykinin, BK, (Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)) and its protonated forms, [BK + H](+), [BK + 2H](2+), and [BK + 3H](3+), were examined theoretically using a combination of the Merck molecular force field, Hartree-Fock, and density functional theory. Neutral BK, [BK + H](+), and [BK + 2H](2+) exist in zwitterionic forms that are stabilized by internal solvation and have compact structures; [BK + 3H](3+) differs by the absence of a salt bridge and adopts an elongated form. The common structural feature in all four BK species is a beta-turn in the Ser(6)-Pro(7)-Phe(8)-Arg(9) sequence. The gas-phase basicity of [BK + H](+) estimated from the calculated protonation energy is in accord with published experimental basicity; population-weighted collision cross-sections of the three ionic forms are in agreement with experimental cross-sections in the literature.