Fractional derivative of the Hurwitz ζ-function and chaotic decay to zero

Abstract In this paper the fractional order derivative of a Dirichlet series, Hurwitz zeta function and Riemann zeta function is explicitly computed using the Caputo fractional derivative in the Ortigueira sense. It is observed that the obtained results are a natural generalization of the integer order derivative. Some interesting properties of the fractional derivative of the Riemann zeta function are also investigated to show that there is a chaotic decay to zero (in the Gaussian plane) and a promising expression as a complex power series.

[1]  R. Mollin Fundamental number theory with applications , 1998 .

[2]  T. Apostol Introduction to analytic number theory , 1976 .

[3]  Vasily E. Tarasov,et al.  ELECTROMAGNETIC FIELDS ON FRACTALS , 2006, 0711.1783.

[4]  H. Srivastava,et al.  Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives , 2013 .

[5]  Richard Mollin Advanced Number Theory with Applications , 2009 .

[6]  Xiao‐Jun Yang,et al.  Maxwell’s Equations on Cantor Sets: A Local Fractional Approach , 2013 .

[7]  G. Sierra A physics pathway to the Riemann hypothesis , 2010, 1012.4264.

[8]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[9]  M. Reuter,et al.  The Zeta function , 1985 .

[10]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[11]  Ai-Min Yang,et al.  Local fractional series expansion method for solving wave and diffusion equations on Cantor sets , 2013 .

[12]  John H. Mathews,et al.  Complex analysis for mathematics and engineering , 1995 .

[13]  D. Hutchinson,et al.  Quantum mechanical potentials related to the prime numbers and Riemann zeros. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  On the Taylor Coefficients of the Hurwitz Zeta Function , 2008, 0812.1303.

[15]  Carlo Cattani,et al.  Fractal Patterns in Prime Numbers Distribution , 2010, ICCSA.

[16]  J. Littlewood,et al.  The zeros of Riemann's zeta-function on the critical line , 1921 .

[17]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[18]  J. Machado,et al.  A Review of Definitions for Fractional Derivatives and Integral , 2014 .

[19]  V. E. Tarasov Fractional Vector Calculus and Fractional Maxwell's Equations , 2008, 0907.2363.

[20]  Physical interpretation of the Riemann hypothesis , 2012, 1202.2115.

[21]  Xiao‐Jun Yang,et al.  Local Fractional -Transforms with Applications to Signals on Cantor Sets , 2014 .

[22]  Gleb Beliakov,et al.  Approximation of Riemann’s Zeta Function by Finite Dirichlet Series: A Multiprecision Numerical Approach , 2015, Exp. Math..

[23]  Chang-pin Li,et al.  Fractional derivatives in complex planes , 2009 .

[24]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[25]  Manuel Duarte Ortigueira,et al.  A coherent approach to non-integer order derivatives , 2006, Signal Process..

[26]  R. Bagley,et al.  On the Equivalence of the Riemann-Liouville and the Caputo Fractional Order Derivatives in Modeling of Linear Viscoelastic Materials , 2007 .

[27]  Xiong Wang Fractional Geometric Calculus: Toward A Unified Mathematical Language for Physics and Engineering ? , 2012 .

[28]  Mehdi Dalir,et al.  Applications of Fractional Calculus , 2010 .

[29]  Ali H. Bhrawy,et al.  A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations , 2015, J. Comput. Phys..

[30]  Michael W. Mislove,et al.  AN INTRODUCTION TO THE THEORY OF , 1982 .

[31]  Riemann–Liouville integrals of fractional order and extended KP hierarchy , 2002, nlin/0207037.

[32]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .