Robustness of multi-grid applied to anisotropic equations on convex domains and on domains with re-entrant corners

SummaryWe analyse multi-grid applied to anisotropic equations within the framework of smoothing and approximation-properties developed by Hack busch. For a model anisotropic equation on a square, we give an up-till-now missing proof of an estimate concerning the approximation property which is essential to show robustness. Furthermore, we show a corresponding estimate for a model anisotropic equation on an L-shaped domain. The existing estimates for the smoothing property are not suitable to prove robustness for either 2-cyclic Gauss-Seidel smoothers or for less regular problems such as our second model equation. For both cases, we give sharper estimates. By combination of our results concerning smoothing- and approximation-properties, robustness of W-cycle multi-grid applied to both our model equations will follow for a number of smoothers.

[1]  J. Aubin Approximation of Elliptic Boundary-Value Problems , 1980 .

[2]  R. Stevenson Modified ILU as a smoother , 1994 .

[3]  Wolfgang Hackbusch,et al.  Theorie und Numerik elliptischer Differentialgleichungen , 1986, Teubner Studienbücher.

[4]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[5]  Rob Stevenson,et al.  New estimates of the contraction number of V-cycle multi-grid with applications to anisotropic equations , 1993 .

[6]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[7]  R. Bank,et al.  5. Variational Multigrid Theory , 1987 .

[8]  Gabriel Wittum,et al.  Linear iterations as smoothers in multigrid methods: Theory with applications to incomplete decompositions , 1989, IMPACT Comput. Sci. Eng..

[9]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[10]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[11]  Klaus Stüben,et al.  Multigrid with ILU-smoothing: systematic tests and improvements , 1989 .

[12]  G. Wittum On the Robustness of ILU Smoothing , 1989 .

[13]  J. Nitsche,et al.  Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .

[14]  Jean-Pierre Aubin,et al.  Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods , 1967 .

[15]  Piet Hemker,et al.  Multigrid methods for problems with a small parameter in the highest derivative , 1984 .