Robustness of multi-grid applied to anisotropic equations on convex domains and on domains with re-entrant corners
暂无分享,去创建一个
[1] J. Aubin. Approximation of Elliptic Boundary-Value Problems , 1980 .
[2] R. Stevenson. Modified ILU as a smoother , 1994 .
[3] Wolfgang Hackbusch,et al. Theorie und Numerik elliptischer Differentialgleichungen , 1986, Teubner Studienbücher.
[4] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[5] Rob Stevenson,et al. New estimates of the contraction number of V-cycle multi-grid with applications to anisotropic equations , 1993 .
[6] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[7] R. Bank,et al. 5. Variational Multigrid Theory , 1987 .
[8] Gabriel Wittum,et al. Linear iterations as smoothers in multigrid methods: Theory with applications to incomplete decompositions , 1989, IMPACT Comput. Sci. Eng..
[9] A. H. Schatz,et al. Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .
[10] Jinchao Xu,et al. Some Estimates for a Weighted L 2 Projection , 1991 .
[11] Klaus Stüben,et al. Multigrid with ILU-smoothing: systematic tests and improvements , 1989 .
[12] G. Wittum. On the Robustness of ILU Smoothing , 1989 .
[13] J. Nitsche,et al. Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .
[14] Jean-Pierre Aubin,et al. Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods , 1967 .
[15] Piet Hemker,et al. Multigrid methods for problems with a small parameter in the highest derivative , 1984 .