Engineering Metal-Organic Frameworks for the Electrochemical Reduction of CO2: A Mini-review.

Electrochemical CO2 reduction holds great promise in reducing atmospheric CO2 concentration. However, several challenges hinder the commercialization of this technology. Energy efficiency, CO2 solubility in aqueous phase, and electrode stability are among the current issues. In this mini-review, we summarize and highlight the main advantages and limitations that Metal-Organic Frameworks may offer to this field of research, either when used directly as electrocatalysts or when used as catalyst precursors.

[1]  Hyung Mo Jeong,et al.  Metal–organic framework-mediated strategy for enhanced methane production on copper nanoparticles in electrochemical CO2 reduction , 2019, Electrochimica Acta.

[2]  Á. Irabien,et al.  Environmental and economic assessment of the formic acid electrochemical manufacture using carbon dioxide: Influence of the electrode lifetime , 2019, Sustainable Production and Consumption.

[3]  A. Dey,et al.  Reduction of CO2 to CO by an Iron Porphyrin Catalyst in the Presence of Oxygen , 2019, ACS Catalysis.

[4]  Zhichuan J. Xu,et al.  Boosting Electrochemical CO2 Reduction on Metal-Organic Frameworks via Ligand Doping. , 2019, Angewandte Chemie.

[5]  Zhiyong Tang,et al.  MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO2 to CO: the calcining temperature effect and the mechanism. , 2019, Nanoscale.

[6]  Wei Guo,et al.  Restructuring of Cu2O to Cu2O@Cu-Metal-Organic Frameworks for Selective Electrochemical Reduction of CO2. , 2019, ACS applied materials & interfaces.

[7]  W. Guo,et al.  Metal–organic framework-derived indium–copper bimetallic oxide catalysts for selective aqueous electroreduction of CO2 , 2019, Green Chemistry.

[8]  Zhi‐Yuan Gu,et al.  Cathodized copper porphyrin metal–organic framework nanosheets for selective formate and acetate production from CO2 electroreduction† †Electronic supplementary information (ESI) available: Synthetic experimental details and additional figures (XRD and SEM data). See DOI: 10.1039/c8sc04344b , 2018, Chemical science.

[9]  P. Strasser,et al.  Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO2RR) , 2018, Advanced materials.

[10]  J. Gascón,et al.  Heterogeneous Catalysis for the Valorization of CO2: Role of Bifunctional Processes in the Production of Chemicals , 2018, ACS Energy Letters.

[11]  C. Berlinguette,et al.  Stabilizing Copper for CO2 Reduction in Low-Grade Electrolyte. , 2018, Inorganic chemistry.

[12]  Stafford W. Sheehan,et al.  Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction , 2018, Chem.

[13]  A. Jo,et al.  Highly Dispersive Gold Nanoparticles on Carbon Black for Oxygen and Carbon Dioxide Reduction , 2018, Electroanalysis.

[14]  X. Bao,et al.  Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs , 2018, Nano Energy.

[15]  Yifei Wang,et al.  High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts , 2018, ACS Energy Letters.

[16]  J. Gascón,et al.  Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins , 2018, ACS Catalysis.

[17]  B. Dong,et al.  Electrochemical Reduction of CO2 to CO by a Heterogeneous Catalyst of Fe–Porphyrin-Based Metal–Organic Framework , 2018, ACS Applied Energy Materials.

[18]  Andrew H. Proppe,et al.  Metal-Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction. , 2018, Journal of the American Chemical Society.

[19]  Aleksandr Savateev,et al.  Templat‐ und metallfreie Synthese stickstoffreicher, nanoporöser und “edler” Kohlenstoffmaterialien durch direkte Kondensation eines vororganisierten Hexaazatriphenylen Vorläufers , 2018, Angewandte Chemie.

[20]  M. Antonietti,et al.  Template- and Metal-Free Synthesis of Nitrogen-Rich Nanoporous "Noble" Carbon Materials by Direct Pyrolysis of a Preorganized Hexaazatriphenylene Precursor. , 2018, Angewandte Chemie.

[21]  Jillian M. Buriak,et al.  Common Pitfalls of Catalysis Manuscripts Submitted to Chemistry of Materials , 2018, Chemistry of Materials.

[22]  L. Elbaz,et al.  Metal organic frameworks as catalysts for oxygen reduction , 2018, Current Opinion in Electrochemistry.

[23]  Wilson A. Smith,et al.  In Situ Fabrication and Reactivation of Highly Selective and Stable Ag Catalysts for Electrochemical CO2 Conversion , 2018, ACS energy letters.

[24]  M. Antonietti,et al.  The Concept of “Noble, Heteroatom‐Doped Carbons,” Their Directed Synthesis by Electronic Band Control of Carbonization, and Applications in Catalysis and Energy Materials , 2018, Advanced materials.

[25]  F. Kapteijn,et al.  Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction. , 2018, ACS applied materials & interfaces.

[26]  C. Xiang,et al.  High-Rate Electrochemical Reduction of Carbon Monoxide to Ethylene Using Cu-Nanoparticle-Based Gas Diffusion Electrodes , 2018 .

[27]  D. Cullen,et al.  Unveiling Active Sites of CO2 Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts , 2018 .

[28]  Jinlong Yang,et al.  Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2. , 2018, Angewandte Chemie.

[29]  F. Kapteijn,et al.  Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes , 2018 .

[30]  Chao Zhang,et al.  Electrocatalytic reduction of CO2 to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks , 2017 .

[31]  F. Kapteijn,et al.  Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework , 2017, Nature Communications.

[32]  J. Furrer,et al.  Transport Matters: Boosting CO2 Electroreduction in Mixtures of [BMIm][BF4 ]/Water by Enhanced Diffusion. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  Pengfei Hou,et al.  Zinc Imidazolate Metal-Organic Frameworks (ZIF-8) for Electrochemical Reduction of CO2 to CO. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  J. Hupp,et al.  Copper Nanoparticles Installed in Metal–Organic Framework Thin Films are Electrocatalytically Competent for CO2 Reduction , 2017 .

[35]  X. Bao,et al.  Boosting CO2 electroreduction over layered zeolitic imidazolate frameworks decorated with Ag2O nanoparticles , 2017 .

[36]  Lei Zhang,et al.  Nanostrukturierte Materialien für die elektrokatalytische CO2-Reduktion und ihre Reaktionsmechanismen , 2017 .

[37]  Jinlong Gong,et al.  Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms. , 2017, Angewandte Chemie.

[38]  F. Kapteijn,et al.  Metal organic frameworks as precursors for the manufacture of advanced catalytic materials , 2017 .

[39]  X. Bao,et al.  Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction , 2017 .

[40]  Qiang Xu,et al.  Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. , 2017, Chemical Society reviews.

[41]  Yadong Li,et al.  Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2. , 2017, Journal of the American Chemical Society.

[42]  S. Pedersen,et al.  Enhanced Catalytic Activity of Cobalt Porphyrin in CO2 Electroreduction upon Immobilization on Carbon Materials. , 2017, Angewandte Chemie.

[43]  Linbing Sun,et al.  Metal-Organic Frameworks for Heterogeneous Basic Catalysis. , 2017, Chemical reviews.

[44]  F. Kapteijn,et al.  Metal–Organic Framework Mediated Cobalt/Nitrogen‐Doped Carbon Hybrids as Efficient and Chemoselective Catalysts for the Hydrogenation of Nitroarenes , 2017 .

[45]  Jens K Nørskov,et al.  Understanding trends in electrochemical carbon dioxide reduction rates , 2017, Nature Communications.

[46]  F. Kapteijn,et al.  Metal–organic and covalent organic frameworks as single-site catalysts , 2017, Chemical Society reviews.

[47]  Garikoitz Beobide,et al.  Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols. , 2017, ChemSusChem.

[48]  Hongtao Yu,et al.  CO2 Electroreduction at Low Overpotential on Oxide-Derived Cu/Carbons Fabricated from Metal Organic Framework. , 2017, ACS applied materials & interfaces.

[49]  X. Bao,et al.  Nanostructured heterogeneous catalysts for electrochemical reduction of CO2 , 2017 .

[50]  Jun Liang,et al.  Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. , 2017, Chemical Society reviews.

[51]  Wilson A. Smith,et al.  Nanostructured Catalysts for the Electrochemical Reduction of CO 2 , 2017 .

[52]  F. Jiao,et al.  Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering , 2016 .

[53]  Licheng Sun,et al.  Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency , 2016 .

[54]  Qiang Sun,et al.  Curvature-Dependent Selectivity of CO2 Electrocatalytic Reduction on Cobalt Porphyrin Nanotubes , 2016 .

[55]  S. Woo,et al.  Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst. , 2016, Angewandte Chemie.

[56]  V. Batista,et al.  Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. , 2016, Journal of the American Chemical Society.

[57]  J. Hupp,et al.  Chemical, thermal and mechanical stabilities of metal–organic frameworks , 2016 .

[58]  C. McCrory,et al.  Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine† †Electronic supplementary information (ESI) available: Representative cyclic voltammograms of modified electrodes, representative current–time plots from controlled potential electrolyses, and tabulated results from cont , 2016, Chemical science.

[59]  P. Yang,et al.  Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. , 2015, Journal of the American Chemical Society.

[60]  Jing Shen,et al.  Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. , 2015, The journal of physical chemistry letters.

[61]  C. Kubiak,et al.  Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2 , 2015 .

[62]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[63]  Wei Xia,et al.  Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion , 2015 .

[64]  F. Kapteijn,et al.  Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts , 2015, Nature Communications.

[65]  Q. Lu,et al.  Nanostructured Metallic Electrocatalysts for Carbon Dioxide Reduction , 2015 .

[66]  George A. Olah,et al.  Electrochemical CO2 Reduction: Recent Advances and Current Trends , 2014 .

[67]  Falong Jia,et al.  Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets , 2014 .

[68]  H. García,et al.  Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. , 2014, Chemical Society reviews.

[69]  Li Zhang,et al.  Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. , 2014, Chemical Society reviews.

[70]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[71]  Zhiyong Tang,et al.  Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. , 2014, Journal of the American Chemical Society.

[72]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[73]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[74]  Qiang Xu,et al.  Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. , 2013, Journal of the American Chemical Society.

[75]  D. Vos,et al.  Metal–organic frameworks as catalysts: the role of metal active sites , 2013 .

[76]  Paul J. A. Kenis,et al.  Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities , 2013 .

[77]  M. A. Kulandainathan,et al.  Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst , 2012 .

[78]  H. García,et al.  Commercial metal-organic frameworks as heterogeneous catalysts. , 2012, Chemical communications.

[79]  Dawei Feng,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[80]  H. García,et al.  Catalysis by metal nanoparticles embedded on metal-organic frameworks. , 2012, Chemical Society reviews.

[81]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[82]  Y. Zenitani,et al.  Electrochemical Reduction of Carbon Dioxide Using a Copper Rubeanate Metal Organic Framework , 2012 .

[83]  H. García,et al.  Metal–organic frameworks as heterogeneous catalysts for oxidation reactions , 2011 .

[84]  J. V. van Bokhoven,et al.  Catalysis by metal-organic frameworks: fundamentals and opportunities. , 2011, Physical chemistry chemical physics : PCCP.

[85]  T. Akita,et al.  Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. , 2011, Journal of the American Chemical Society.

[86]  Cheng Wang,et al.  Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. , 2010, Journal of the American Chemical Society.

[87]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[88]  Wenbin Lin,et al.  A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. , 2010, Nature chemistry.

[89]  Pengyan Wu,et al.  Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. , 2010, Journal of the American Chemical Society.

[90]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[91]  Yumei Zhai,et al.  Effect of Gaseous Impurities on the Electrochemical Reduction of CO2 on Copper Electrodes , 2009 .

[92]  David Farrusseng,et al.  Metall‐organische Gerüste für die Katalyse , 2009 .

[93]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[94]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[95]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[96]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[97]  Z. Su,et al.  Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. , 2009, Journal of the American Chemical Society.

[98]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[99]  M. Eddaoudi,et al.  Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. , 2008, Journal of the American Chemical Society.

[100]  K. Tamaki,et al.  Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2008, Journal of the American Chemical Society.

[101]  T. Akita,et al.  Metal-organic framework as a template for porous carbon synthesis. , 2008, Journal of the American Chemical Society.

[102]  Wenbin Lin,et al.  Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks: network-structure-dependent catalytic activity. , 2007, Angewandte Chemie.

[103]  D. D. De Vos,et al.  Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). , 2006, Chemistry.

[104]  S. Nguyen,et al.  A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. , 2006, Chemical communications.

[105]  Hiroaki Sakurai,et al.  Preparation, adsorption properties, and catalytic activity of 3D porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions. , 2006, Angewandte Chemie.

[106]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[107]  Akira Murata,et al.  "Deactivation of copper electrode" in electrochemical reduction of CO2 , 2005 .

[108]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[109]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[110]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[111]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.