Properties of galaxy groups in the Sloan Digital Sky Survey – II. Active galactic nucleus feedback and star formation truncation

Successfully reproducing the galaxy luminosity function (LF) and the bimodality in the galaxy distribution requires a mechanism that can truncate star formation in massive haloes. Current models of galaxy formation consider two such truncation mechanisms: strangulation, which acts on satellite galaxies, and active galactic nucleus (AGN) feedback, which predominantly affects central galaxies. The efficiencies of these processes set the blue fraction of galaxies, f(blue)(L, M), as a function of galaxy luminosity, L, and halo mass, M. In this paper, we use a galaxy group catalogue extracted from the Sloan Digital Sky Survey (SDSS) to determine f(blue)(L, M). To demonstrate the potential power of these data as a benchmark for galaxy formation models, we compare the results to the semi-analytical model for galaxy formation of Croton et al. Although this model accurately fits the global statistics of the galaxy population, as well as the shape of the conditional LF, there are significant discrepancies when the blue fraction of galaxies as a function of mass and luminosity is compared between the observations and the model. In particular, the model predicts (i) too many faint satellites in massive haloes, (ii) a blue fraction of satellites that is much too low, and (iii) a blue fraction of centrals that is too high and with an inverted luminosity dependence. In the same order, we argue that these discrepancies owe to (i) the neglect of tidal stripping in the semi-analytical model, (ii) the oversimplified treatment of strangulation, and (iii) improper modelling of dust extinction and/or AGN feedback. The data presented here will prove useful to test and calibrate future models of galaxy formation and, in particular, to discriminate between various models for AGN feedback and other star formation truncation mechanisms.

[1]  J. Silk,et al.  Massive and Red Objects Predicted by a Semianalytical Model of Galaxy Formation , 2006, astro-ph/0601685.

[2]  A. Dekel,et al.  Modelling the galaxy bimodality: shutdown above a critical halo mass , 2006, astro-ph/0601295.

[3]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[4]  R. Bouwens,et al.  AGN Feedback Causes Downsizing , 2005, astro-ph/0511116.

[5]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[6]  Garching,et al.  Hydrodynamical simulations of cluster formation with central AGN heating , 2005, astro-ph/0509506.

[7]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[8]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[9]  P. Hopkins,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[10]  A. Fontana,et al.  Bimodal Color Distribution in Hierarchical Galaxy Formation , 2005, astro-ph/0506387.

[11]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[12]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[13]  S. White,et al.  Intergalactic stars in z∼ 0.25 galaxy clusters: systematic properties from stacking of Sloan Digital Sky Survey imaging data , 2005, astro-ph/0501194.

[14]  C. Carilli,et al.  The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts , 2005, Nature.

[15]  S. Okamura,et al.  The Environmental Dependence of Galaxy Properties in the Local Universe: Dependences on Luminosity, Local Density, and System Richness , 2004, astro-ph/0411132.

[16]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[17]  R. Bender,et al.  The Epochs of Early-Type Galaxy Formation as a Function of Environment , 2004, astro-ph/0410209.

[18]  H. Mo,et al.  Galaxy occupation statistics of dark matter haloes: observational results , 2004, astro-ph/0410114.

[19]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[20]  R. Nichol,et al.  The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment , 2004, astro-ph/0406266.

[21]  Y. Jing,et al.  A halo-based galaxy group finder: calibration and application to the 2dFGRS , 2004, astro-ph/0405234.

[22]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[23]  D. Madgwick,et al.  Galaxy groups in the 2dFGRS: the group-finding algorithm and the 2PIGG catalogue , 2004, astro-ph/0402567.

[24]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[25]  R. Nichol,et al.  Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS , 2003, astro-ph/0311379.

[26]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[27]  Neta A. Bahcall,et al.  The Dependence on Environment of the Color-Magnitude Relation of Galaxies , 2003, astro-ph/0307336.

[28]  C. S. Crawford,et al.  A deep Chandra observation of the Perseus cluster: shocks and ripples , 2003, astro-ph/0306036.

[29]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[30]  A. Babul,et al.  The evolution of substructure in galaxy, group and cluster haloes - I. Basic dynamics , 2003, astro-ph/0301612.

[31]  J. Bullock,et al.  Halo Substructure and the Power Spectrum , 2002, astro-ph/0212339.

[32]  H. Mo,et al.  Linking early‐ and late‐type galaxies to their dark matter haloes , 2002, astro-ph/0210495.

[33]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[34]  H. Mo,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[35]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[36]  M. Merchán,et al.  Galaxy groups in the 2dF Galaxy Redshift Survey: the catalogue , 2002, astro-ph/0204493.

[37]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[38]  C. Baugh,et al.  The effects of photoionization on galaxy formation – I. Model and results at z=0 , 2001, astro-ph/0108217.

[39]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[40]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[41]  M. Steinmetz,et al.  The Power Spectrum Dependence of Dark Matter Halo Concentrations , 2000, astro-ph/0012337.

[42]  A. Babul,et al.  The Dynamics of Sinking Satellites around Disk Galaxies: A Poor Man’s Alternative to High-Resolution Numerical Simulations , 2000, astro-ph/0012305.

[43]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[44]  Bower,et al.  Gone with the wind: the origin of S0 galaxies in clusters , 2000, Science.

[45]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[46]  J. Navarro,et al.  The Origin of Star Formation Gradients in Rich Galaxy Clusters , 2000, astro-ph/0004078.

[47]  J. Dalcanton,et al.  Measuring the Diffuse Optical Light in Abell 1651 , 2000, astro-ph/0001415.

[48]  H. Mo,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[49]  R. Bower,et al.  Ram pressure stripping of spiral galaxies in clusters , 1999, astro-ph/9903436.

[50]  J. Ostriker,et al.  Cooling Flows and Quasars: Different Aspects of the Same Phenomenon? I. Concepts , 1997, astro-ph/9706281.

[51]  G. Kauffmann,et al.  Chemical enrichment and the origin of the colour-magnitude relation of elliptical galaxies in a hierarchical merger model , 1997, astro-ph/9704148.

[52]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[53]  R. Nichol,et al.  The Luminosity Function of the Coma Cluster Core for -25 , 1995, astro-ph/9503102.

[54]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[55]  J. Binney,et al.  Elliptical galaxy cooling flows without mass drop-out , 1993 .

[56]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[57]  J. Huchra,et al.  Groups of galaxies in the Center for Astrophysics redshift survey , 1989 .

[58]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[59]  J. Huchra,et al.  Groups of galaxies. I. Nearby groups , 1982 .

[60]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[61]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[62]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[63]  M. Rees,et al.  Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters , 1977 .

[64]  J. Silk On the fragmentation of cosmic gas clouds. I. The formation of galaxies and the first generation of stars. , 1977 .

[65]  R. Larson Effects of Supernovae on the Early Evolution of Galaxies , 1974 .

[66]  Jr. Oemler Augustus The Systematic Properties of Clusters of Galaxies. Photometry of 15 Clusters , 1974 .

[67]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .