Interaction Strength Analysis to Model Retweet Cascade Graphs

[1]  Barry Friedman,et al.  Commentary: The impact of social networking tools on political change in Egypt's "Revolution 2.0" , 2011, Electron. Commer. Res. Appl..

[2]  Guofei Gu,et al.  Analyzing spammers' social networks for fun and profit: a case study of cyber criminal ecosystem on twitter , 2012, WWW.

[3]  Wenji Mao,et al.  NPP: A neural popularity prediction model for social media content , 2019, Neurocomputing.

[4]  Paulo Cortez,et al.  A Google Trends spatial clustering approach for a worldwide Twitter user geolocation , 2020, Inf. Process. Manag..

[5]  Jure Leskovec,et al.  SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity , 2015, KDD.

[6]  Paola Zola,et al.  Twitter alloy steel disambiguation and user relevance via one-class and two-class news titles classifiers , 2020, Neural Computing and Applications.

[7]  Hideaki Takeda,et al.  Information Diffusion on Twitter: Everyone Has Its Chance, But All Chances Are Not Equal , 2013, 2013 International Conference on Signal-Image Technology & Internet-Based Systems.

[8]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[9]  Io Taxidou,et al.  Online analysis of information diffusion in twitter , 2014, WWW.

[10]  Rik Van de Walle,et al.  Towards Multi-level Provenance Reconstruction of Information Diffusion on Social Media , 2015, CIKM.

[11]  Maurizio Tesconi,et al.  RTbust: Exploiting Temporal Patterns for Botnet Detection on Twitter , 2019, WebSci.

[12]  Xiangjian He,et al.  User relationship strength modeling for friend recommendation on Instagram , 2017, Neurocomputing.

[13]  Enys Mones,et al.  Hierarchy Measure for Complex Networks , 2012, PloS one.

[14]  Xueqi Cheng,et al.  Modeling and Predicting Retweeting Dynamics via a Mixture Process , 2016, WWW.

[15]  Andrea Marchetti,et al.  Predictability or Early Warning: Using Social Media in Modern Emergency Response , 2016, IEEE Internet Comput..

[16]  Vasileios Karyotis,et al.  Temporal Dynamics of Information Diffusion in Twitter: Modeling and Experimentation , 2018, IEEE Transactions on Computational Social Systems.

[17]  Qinghua Zheng,et al.  Analyzing and modeling dynamics of information diffusion in microblogging social network , 2017, J. Netw. Comput. Appl..

[18]  Tao Mei,et al.  Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters , 2020, IEEE Transactions on Knowledge and Data Engineering.

[19]  Fei Xiong,et al.  Information cascades prediction with attention neural network , 2020, Human-centric Computing and Information Sciences.

[20]  Xueqi Cheng,et al.  DeepHawkes: Bridging the Gap between Prediction and Understanding of Information Cascades , 2017, CIKM.

[21]  Marco Conti,et al.  Information diffusion in distributed OSN: The impact of trusted relationships , 2015, Peer-to-Peer Networking and Applications.

[22]  Bernardo A. Huberman,et al.  Predicting the popularity of online content , 2008, Commun. ACM.

[23]  Jean-Charles Delvenne,et al.  Temporal Sequence of Retweets Help to Detect Influential Nodes in Social Networks , 2019, IEEE Transactions on Computational Social Systems.

[24]  Virgílio A. F. Almeida,et al.  Understanding factors that affect response rates in twitter , 2012, HT '12.

[25]  Emily B. Fox,et al.  A Bayesian Approach for Predicting the Popularity of Tweets , 2013, ArXiv.

[26]  Jimmy J. Lin,et al.  Information network or social network?: the structure of the twitter follow graph , 2014, WWW.

[27]  Fei Wang,et al.  From Micro to Macro: Uncovering and Predicting Information Cascading Process with Behavioral Dynamics , 2015, 2015 IEEE International Conference on Data Mining.