A Cluster Analysis of MOOC Stakeholder Perspectives

Massive Open Online Courses (MOOCs) are providing opportunities for thousands of learners to participate in free higher education courses online. MOOCs have unique features that make them an effective Technology-Enhanced Learning (TEL) approach. Institutions are offering a growing variety of MOOCs. Nevertheless, there are several crucial challenges that should be considered in the development of MOOCs, e.g., the drop-out rate of over 95% of course participants. One of the potential reasons for that is the complexity and diversity of MOOC participants. This diversity is not only related to the cultural and demographic profile, but also considers the diverse motives and perspectives when enrolled in MOOCs. This paper aims to cluster and analyze the different objectives of MOOC stakeholders to build a deeper and better understanding of their behaviors. Our main finding was a set of eight clusters, i.e., blended learning, flexibility, high quality content, instructional design and learning methodologies, lifelong learning, network learning, openness, and student-centered learning. This cluster schema creates a meaningful picture for the MOOC community.ResumenLos cursos en línea masivos y abiertos (Massive Open Online Courses, MOOC) proporcionan oportunidades ilimitadas para la participación de miles de estudiantes en cursos de enseñanza superior en línea. Los MOOC tienen características únicas que los convierten en un método efectivo del aprendizaje electrónico, en concreto el aprendizaje mejorado por tecnología (Technology-Enhanced Learning, TEL). Numerosas instituciones ofrecen una creciente variedad de MOOC. Sin embargo, existen múltiples retos que deben ser considerados al desarrollar MOOC, por ejemplo, la tasa de abandono de participantes en los cursos es del 95%. Una de las posibles razones para ello es la complejidad y la diversidad de los participantes en los MOOC. Está diversidad no está solamente relacionada con el perfil demográfico y cultural, sino también con los diversos motivos y perspectivas que los usuarios tienen al inscribirse en MOOC. La intención de este artículo es agrupar en dústeres los objetivos de los participantes en MOOC y analizarlos para lograr una mayor comprensión de sus comportamientos. El principal resultado es el descubrimiento de ocho clústeres: aprendizaje mezclado (blended learning), flexibilidad (flexibility), contenido de alta calidad (high quality content), diseño instruccional y metodologías de aprendizaje (instructional design and learning methodologies), aprendizaje a lo largo de la vida (lifelong learning), aprendizaje en red (network learning), apertura (openness) y aprendizaje centrado en el estudiante (student-centered learning). Este esquema de agrupamiento en clústeres crea una visión significativa para la comunidad de participantes en MOOC.

[1]  M. Deimann,et al.  On the role of openness in education: A historical reconstruction , 2013, Distances et médiations des savoirs.

[2]  José Tejada Fernández Professionalisation of Teaching in Universities: Implications from a Training Perspective , 2013, International Journal of Educational Technology in Higher Education.

[3]  Ulrik Schroeder,et al.  What Drives a Successful MOOC? An Empirical Examination of Criteria to Assure Design Quality of MOOCs , 2014, 2014 IEEE 14th International Conference on Advanced Learning Technologies.

[4]  Ulrik Schroeder,et al.  Video-Based Learning: A Critical Analysis of The Research Published in 2003-2013 and Future Visions , 2014 .

[5]  Martin Ebner,et al.  Offering cMOOCs Collaboratively: The COER13 Experience from the Convenors’ Perspective , 2014 .

[6]  Ulrik Schroeder,et al.  MOOCs - A Review of the State-of-the-Art , 2014, CSEDU.

[7]  Ken Coates The Re-invention of the Academy: How Technologically Mediated Learning Will - And Will Not - Transform Advanced Education , 2013, ICHL.

[8]  Shirley Williams,et al.  MOOCs: A systematic study of the published literature 2008-2012 , 2013 .

[9]  José Tejada Fernández Professionalització docent a la universitat: implicacions des de la formació , 2013 .

[10]  Michael Gaebel,et al.  MOOCs: Massive Open Online Courses. EUA Occasional Papers. , 2013 .

[11]  J. Daniel,et al.  Making Sense of MOOCs : Musings in a Maze of Myth , Paradox and Possibility Author : , 2013 .

[12]  Helene Fournier,et al.  A pedagogy of abundance or a pedagogy to support human beings? Participant support on massive open online courses , 2011 .

[13]  Rebecca J. Hogue,et al.  Using mLearning and MOOCs to understand chaos, emergence, and complexity in education , 2011 .

[14]  Andrew E. Smith,et al.  Conversations Between Carers and People With Schizophrenia: A Qualitative Analysis Using Leximancer , 2010, Qualitative health research.

[15]  Stephen Downes,et al.  Learning Networks and Connective Knowledge , 2010 .

[16]  Mohamed Amine Chatti Personalization in technology enhanced learning: a social software perspective , 2010 .

[17]  Roy Williams,et al.  The Ideals and Reality of Participating in a MOOC , 2010, Proceedings of the International Conference on Networked Learning.

[18]  Kristi Jackson,et al.  Qualitative Data Analysis with NVivo , 2007 .

[19]  Andrew E. Smith,et al.  Evaluation of unsupervised semantic mapping of natural language with Leximancer concept mapping , 2006, Behavior research methods.

[20]  Marcus Watson,et al.  Leximancer Concept Mapping of Patient Case Studies , 2005, KES.

[21]  George Siemens Connectivism: A Learning Theory for the Digital Age , 2004 .

[22]  Philipp Mayring Qualitative Inhaltsanalyse : Grundlagen und Techniken , 2003 .

[23]  P. Mayring Qualitative Content Analysis , 2000 .

[24]  Lyn Richards,et al.  Using NVIVO in Qualitative Research , 1999 .