Advances in infrared gradient refractive index (GRIN) materials: a review

Abstract. Optical materials capable of advanced functionality in the infrared will enable optical designs that can offer lightweight or small footprint solutions in both planar and bulk optical systems. The University of Central Florida’s Glass Processing and Characterization Laboratory, together with our collaborators, have been evaluating compositional design and processing protocols for both bulk and film strategies employing multicomponent chalcogenide glasses (ChGs). These materials can be processed with broad compositional flexibility that allows tailoring of their transmission window, physical and optical properties, which allows them to be engineered for compatibility with other homogeneous amorphous or crystalline optical components. We review progress in forming ChG-based gradient refractive index (GRIN) materials from diverse processing methodologies, including solution-derived ChG layers, poled ChGs with gradient compositional and surface reactivity behavior, nanocomposite bulk ChGs and glass ceramics, and metalens structures realized through multiphoton lithography. We discussed current design and metrology tools that lend critical information to material design efforts to realize next-generation IR GRIN media for bulk or film applications.

[1]  Hongtao Lin,et al.  Solution Processing and Resist‐Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration , 2014 .

[2]  Anupama Yadav,et al.  Monolithic Chalcogenide Optical Nanocomposites Enable Infrared System Innovation: Gradient Refractive Index Optics , 2020 .

[3]  G. Pfister,et al.  Electronic properties of chalcogenide glasses and their use in xerography , 1979 .

[4]  Daniel Gibson,et al.  GRIN optics for multispectral infrared imaging , 2015, Defense + Security Symposium.

[5]  Hongtao Lin,et al.  High‐Performance, High‐Index‐Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non‐planar Substrates , 2013 .

[6]  Daniel Gibson,et al.  IR-GRIN optics for imaging , 2016, SPIE Defense + Security.

[7]  C. Askins,et al.  Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients. , 1991, Applied optics.

[8]  Kathleen Richardson,et al.  Designing mid-wave infrared (MWIR) thermo-optic coefficient (dn/dT) in chalcogenide glasses , 2016, SPIE Defense + Security.

[9]  Laura Sisken,et al.  Laser-induced crystallization mechanisms in chalcogenide glass materials for advanced optical functionality , 2017 .

[10]  Andreas Tünnermann,et al.  Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. , 2006, Optics express.

[11]  Antoine Lepicard,et al.  Design of surface chemical reactivity and optical properties in glasses , 2016 .

[12]  L. Glebov,et al.  High-efficiency bragg gratings in photothermorefractive glass. , 1999, Applied optics.

[13]  Spencer Novak,et al.  Nanoparticles in Solution-Derived Chalcogenide Glass Films , 2012 .

[14]  Kathleen Richardson,et al.  Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques , 2011 .

[15]  Duncan T. Moore,et al.  Optical design study in the 1-5μm spectral band with gradient-index materials , 2014, Other Conferences.

[16]  Michael Ponting,et al.  Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system. , 2016, Optics express.

[17]  Anupama Yadav,et al.  Influence of phase separation on structure–property relationships in the (GeSe2–3As2Se3)1−xPbSex glass system , 2017 .

[18]  Craig B. Arnold,et al.  Structural properties of solution processed Ge23Sb7S70 glass materials , 2012 .

[19]  Martin Richardson,et al.  Spatial tailoring of the refractive index in infrared glass-ceramic films enabled by direct laser writing , 2020 .

[20]  Duncan T. Moore,et al.  Design of a freeform gradient-index prism for mixed reality head mounted display , 2018, Photonics Europe.

[21]  Duncan T. Moore,et al.  Optical design study of a VIS-SWIR 3X zoom lens , 2015, SPIE Optical Engineering + Applications.

[22]  Walter J. Riker A Review of J , 2010 .

[23]  S D Fantone Refractive index and spectral models for gradient-index materials. , 1983, Applied optics.

[24]  Marc Douay,et al.  Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses , 2000 .

[25]  Guy Beadie,et al.  Achromatic GRIN singlet lens design. , 2013, Optics express.

[26]  J. Si,et al.  Photoinduced stable second-harmonic generation in chalcogenide glasses. , 2001, Optics letters.

[27]  Clara Rivero-Baleine,et al.  Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses , 2016, SPIE OPTO.

[28]  Andrew M. Boyd Optical design of athermal, multispectral, radial gradient-index lenses , 2018 .

[29]  Dong-Joon Lee,et al.  Third order cascaded Raman wavelength shifting in chalcogenide fibers , 2006, QELS 2006.

[30]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[31]  Kathleen Richardson,et al.  Three-Dimensional Microstructural Characterization of Novel Chalcogenide Nanocomposites for Gradient Refractive Index Applications , 2019, Microscopy and Microanalysis.

[32]  Duncan T. Moore,et al.  Color correction in the infrared using gradient-index materials , 2013 .

[33]  Jacques Lucas,et al.  Evaluation of glass fibers from the Ga–Ge–Sb–Se system for infrared applications , 2004 .

[34]  Martin Richardson,et al.  Progress on the Fabrication of On-Chip, Integrated Chalcogenide Glass (ChG)-Based Sensors , 2009 .

[35]  Daniel Gibson,et al.  IR GRIN optics: design and fabrication , 2017, Defense + Security.

[36]  Sophie LaRochelle,et al.  First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses , 1999 .

[37]  Martin Richardson,et al.  Laser-induced modification of local refractive index in infrared glass-ceramic films , 2019, LASE.

[38]  Evelyne Fargin,et al.  Structural Rearrangements and Second-Order Optical Response in the Space Charge Layer of Thermally Poled Sodium−Niobium Borophosphate Glasses , 2007 .

[39]  Tobias Binkele,et al.  Characterization of gradient index optical components using experimental ray tracing , 2019, OPTO.

[40]  J. David Musgraves,et al.  Engineering novel infrared glass ceramics for advanced optical solutions , 2016, SPIE Defense + Security.

[41]  Jasbinder S. Sanghera,et al.  DEVELOPMENT AND APPLICATIONS OF CHALCOGENIDE GLASS OPTICAL FIBERS AT NRL , 2001 .

[42]  D T Moore,et al.  Real-time index profile measurement during GRIN glass fabrication. , 1988, Applied optics.

[43]  K. D. Kolwicz,et al.  Silver Halide‐Chalcogenide Glass Inorganic Resists for X‐Ray Lithography , 1980 .

[44]  Julie Bentley,et al.  The first order solutions for two configurations of discrete zoom lenses , 2016, SPIE Defense + Security.

[45]  Duncan T. Moore,et al.  Free-space infrared Mach–Zehnder interferometer for relative index of refraction measurement of gradient index optics , 2017 .

[46]  Kathleen Richardson,et al.  Non-linear optical properties of chalcogenide glasses in the system As–S–Se , 1999 .

[47]  Craig B. Arnold,et al.  Spin-coating of Ge23Sb7S70 chalcogenide glass thin films , 2009 .

[48]  Jasbinder S. Sanghera,et al.  Methods of both destructive and non-destructive metrology of GRIN optical elements , 2015, Defense + Security Symposium.

[49]  D T Moore,et al.  Design of a gradient-index photographic objective. , 1982, Applied optics.

[50]  Jogender Nagar,et al.  Multi-element, multi-frequency lens transformations enabled by optical wavefront matching. , 2017, Optics express.

[51]  Oleg M. Efimov,et al.  Photo-structural transformation of chalcogenide glasses under non-linear absorption of laser radiation , 1997 .

[52]  Duncan T. Moore,et al.  Optical design study in the 3-12 μm spectral band with gradient-index materials , 2017, Other Conferences.

[53]  Y. Zou,et al.  Chalcogenide glasses for advanced photonic and photovoltaic applications , 2015 .

[54]  Eirini Papagiakoumou,et al.  Pulsed infrared radiation transmission through chalcogenide glass fibers , 2007 .

[55]  D T Moore,et al.  Models for the thermal expansion coefficient and temperature coefficient of the refractive index in gradient-index glass. , 1985, Applied optics.

[56]  R. A. Myers,et al.  Large second-order nonlinearity in poled fused silica. , 1991, Optics letters.

[57]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[58]  Kathleen Richardson,et al.  Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling , 2015 .

[59]  Kathleen Richardson,et al.  Unveiling True Three-dimensional Microstructural Evolution in Novel Chalcogenide Nanocomposites as a Route to Infrared Gradient Refractive Index Functionality , 2020, Microscopy and Microanalysis.

[60]  Paul A Lane,et al.  Optical properties of a bio-inspired gradient refractive index polymer lens. , 2008, Optics express.

[61]  V A Kamensky,et al.  High-Power As-S Glass Fiber Delivery Instrument for Pulse YAG:Er Laser Radiation. , 1998, Applied optics.

[62]  Thierry Cardinal,et al.  Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties , 2012 .

[63]  Thierry Cardinal,et al.  Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials , 2016 .

[64]  Theresa S. Mayer,et al.  Processing and fabrication of micro-structures by multiphoton lithography in germanium-doped arsenic selenide , 2018, Optical Materials Express.

[65]  Sasan Fathpour,et al.  Electrospray Deposition of Uniform Thickness Ge23Sb7S70 and As40S60 Chalcogenide Glass Films. , 2016, Journal of visualized experiments : JoVE.

[66]  Daniel Gibson,et al.  Homogeneous and Gradient Index (GRIN) Materials For Multi-Band IR Optics , 2014 .

[67]  Kathleen Richardson,et al.  Electrospray deposition of quantum dot-doped Ge 23 Sb 7 S 70 chalcogenide glass films , 2017 .

[68]  SAWYER D. CAMPBELL,et al.  SWaP reduction regimes in achromatic GRIN singlets , 2016 .

[69]  Theresa S. Mayer,et al.  Evidence of spatially selective refractive index modification in 15GeSe 2 -45As 2 Se 3 -40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications , 2017 .

[70]  Jogender Nagar,et al.  Analytical surrogate model for the aberrations of an arbitrary GRIN lens. , 2016, Optics express.

[71]  Erick Koontz,et al.  Characterization of structural relaxation in inorganic glasses using length dilatometry , 2015 .

[72]  Kathleen Richardson,et al.  Micro-structuring the surface reactivity of a borosilicate glass via thermal poling , 2016 .

[73]  Duncan T. Moore,et al.  New tools for finding first-order zoom lens solutions and the analysis of zoom lenses during the design process , 2015, SPIE Optical Engineering + Applications.

[74]  N. Carlie,et al.  A SOLUTION-BASED APPROACH TO THE FABRICATION OF NOVEL CHALCOGENIDE GLASS MATERIALS AND STRUCTURES , 2010 .

[75]  Martin Richardson,et al.  Engineering Glassy Chalcogenide Materials for Integrated Optics Applications , 2007 .

[76]  J. D. Musgraves,et al.  Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range. , 2011, The Review of scientific instruments.

[77]  T Izumitani,et al.  Gradient-index rod lens made by a double ion-exchange process. , 1988, Applied optics.

[78]  Juejun Hu,et al.  Development of chipscale chalcogenide glass based infrared chemical sensors , 2011, OPTO.

[79]  Andrew M. Boyd Optical design of athermal, multispectral, radial GRIN lenses , 2017, Defense + Security.

[80]  Ulrich Fotheringham,et al.  Thermal and Structural Property Characterization of Commercially Moldable Glasses , 2010 .

[81]  Duncan T. Moore,et al.  Application of a Multiple Cavity Fabry-Perot Interferometer for Measuring the Thermal Expansion and Temperature Dependence of Refractive Index in New Gradient-Index Materials , 2012 .

[82]  Kathleen Richardson,et al.  Ultralow Dispersion Multicomponent Thin‐Film Chalcogenide Glass for Broadband Gradient‐Index Optics , 2018, Advanced materials.

[83]  Scott Sparrold,et al.  Achrotech: achromat cost versus performance for conventional, diffractive, and GRIN components , 2016, Optical Engineering + Applications.

[84]  Anupama Yadav,et al.  Advances in infrared GRIN: a review of novel materials towards components and devices , 2018, Defense + Security.

[85]  Kye-Sung Lee,et al.  Nondestructive metrology by optical coherence tomography empowering manufacturing iterations of layered polymeric optical materials , 2013 .

[86]  Tigran Galstian,et al.  Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides , 2001 .

[87]  Thomas G. Alley,et al.  Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica , 1999 .

[88]  Duncan T. Moore,et al.  Optical Design with Gradient-Index Elements Constrained to Real Material Properties , 2012 .

[89]  D. Werner,et al.  Transformation-optics-inspired anti-reflective coating design for gradient index lenses. , 2015, Optics letters.

[90]  Danvers E. Johnston,et al.  Deposition of Ge23Sb7S70 chalcogenide glass films by electrospray , 2015 .

[91]  Oleg M. Efimov,et al.  Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses , 2001 .

[92]  Anupama Yadav,et al.  Infrared Glass–Ceramics with Multidispersion and Gradient Refractive Index Attributes , 2019, Advanced Functional Materials.

[93]  Douglas H. Werner,et al.  On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics , 2016 .

[94]  A. Villeneuve,et al.  Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form , 1998 .

[95]  Kathleen Richardson,et al.  New Candidate Multicomponent Chalcogenide Glasses for Supercontinuum Generation , 2018, Applied Sciences.

[96]  Daniel Gibson,et al.  Layered chalcogenide glass structures for IR lenses , 2014, Defense + Security Symposium.

[97]  D T Moore,et al.  Measurement of the differential thermal expansion and temperature dependence of refractive index in gradient-index glass. , 1985, Applied optics.

[98]  Jasbinder S. Sanghera,et al.  Active and passive chalcogenide glass optical fibers for IR applications: a review , 1999 .

[99]  J. David Musgraves,et al.  Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60 −xSex glass network , 2012 .

[100]  Anupama Yadav,et al.  Long-lived monolithic micro-optics for multispectral GRIN applications , 2018, Scientific Reports.

[101]  Tigran Galstian,et al.  Temperature dependence of Bragg reflectors in chalcogenide As 2 S 3 glass slab waveguides , 2000 .

[102]  Kathleen Richardson,et al.  Final Shape of Precision Molded Optics: Part II—Validation and Sensitivity to Material Properties and Process Parameters , 2012 .

[103]  Kathleen Richardson,et al.  Compositional dependence of structural relaxation behavior in the Ge-As-Se system characterized by length dilatometry , 2014 .

[104]  Guy Beadie,et al.  Athermal achromat lens enabled by polymer gradient index optics , 2016, SPIE Defense + Security.

[105]  Kathleen Richardson,et al.  Final Shape of Precision Molded Optics: Part I—Computational Approach, Material Definitions and the Effect of Lens Shape , 2012 .

[106]  D T Moore,et al.  Gradient infrared optical material prepared by a chemical vapor deposition process. , 1986, Applied optics.

[107]  Martin Richardson,et al.  Scalable laser-written Ge-As-Pb-Se chalcogenide glass-ceramic films and the realization of infrared gradient refractive index elements , 2019, Defense + Commercial Sensing.