Mechanisms of Parkinson's Disease: Lessons from Drosophila.

[1]  John Q. Trojanowski,et al.  Chaperone Suppression of α-Synuclein Toxicity in a Drosophila Model for Parkinson's Disease , 2001, Science.

[2]  P. Auluck,et al.  Pharmacological prevention of Parkinson disease in Drosophila , 2002, Nature Medicine.

[3]  J. C. Greene,et al.  Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Sunil Q. Mehta,et al.  Synaptojanin Is Recruited by Endophilin to Promote Synaptic Vesicle Uncoating , 2003, Neuron.

[5]  C. Bruno,et al.  Respiratory complex III is required to maintain complex I in mammalian mitochondria. , 2004, Molecular cell.

[6]  Patrizia Rizzu,et al.  Drosophila DJ-1 Mutants Are Selectively Sensitive to Environmental Toxins Associated with Parkinson’s Disease , 2005, Current Biology.

[7]  J. C. Greene,et al.  Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Feany,et al.  α-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease , 2005, Nature Neuroscience.

[9]  G. Cha,et al.  Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. , 2005, Gene.

[10]  Changan Jiang,et al.  Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin , 2006, Nature.

[11]  Sunhong Kim,et al.  Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin , 2006, Nature.

[12]  S. Lindquist,et al.  α-Synuclein Blocks ER-Golgi Traffic and Rab1 Rescues Neuron Loss in Parkinson's Models , 2006, Science.

[13]  Kexiang Xu,et al.  Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging , 2006, Proceedings of the National Academy of Sciences.

[14]  Kenneth M. Rosen,et al.  Parkin Protects against Mitochondrial Toxins and β-Amyloid Accumulation in Skeletal Muscle Cells* , 2006, Journal of Biological Chemistry.

[15]  Robert W. Taylor,et al.  High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease , 2006, Nature Genetics.

[16]  Jongkyeong Chung,et al.  Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. , 2007, Biochemical and biophysical research communications.

[17]  J. Feldon,et al.  DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[18]  R. Youle,et al.  The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division , 2007, The Journal of cell biology.

[19]  Daewoo Lee,et al.  Disruption of dopamine homeostasis underlies selective neurodegeneration mediated by α‐synuclein , 2007 .

[20]  George R Jackson,et al.  A Drosophila Model of Mutant Human Parkin-Induced Toxicity Demonstrates Selective Loss of Dopaminergic Neurons and Dependence on Cellular Dopamine , 2007, The Journal of Neuroscience.

[21]  T. Dawson,et al.  What causes cell death in Parkinson's disease? , 2008, Annals of neurology.

[22]  R. Takahashi,et al.  Phosphorylation of 4E‐BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila , 2008, The EMBO journal.

[23]  Angela C. Poole,et al.  The PINK1/Parkin pathway regulates mitochondrial morphology , 2008, Proceedings of the National Academy of Sciences.

[24]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[25]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[26]  M. Beal,et al.  Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery , 2008, Proceedings of the National Academy of Sciences.

[27]  Hansong Deng,et al.  The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[28]  George Perry,et al.  Oxidative stress and neurotoxicity. , 2008, Chemical research in toxicology.

[29]  David S. Park,et al.  Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP , 2008, Proceedings of the National Academy of Sciences.

[30]  P. Verstreken,et al.  Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function , 2009, EMBO molecular medicine.

[31]  Michael R. Duchen,et al.  PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death , 2009, Molecular cell.

[32]  M. Schlame,et al.  Role of calcium-independent phospholipase A2 in the pathogenesis of Barth syndrome , 2009, Proceedings of the National Academy of Sciences.

[33]  M. Lazarou,et al.  Assembly of mitochondrial complex I and defects in disease. , 2009, Biochimica et biophysica acta.

[34]  T. Fujimura,et al.  Toxic effects of dopamine metabolism in Parkinson's disease. , 2009, Parkinsonism & related disorders.

[35]  H. Jäckle,et al.  Pre‐fibrillar α‐synuclein variants with impaired β‐structure increase neurotoxicity in Parkinson's disease models , 2009, The EMBO journal.

[36]  K. Chung,et al.  The role of ubiquitin linkages on α‐synuclein induced‐toxicity in a Drosophila model of Parkinson’s disease , 2009, Journal of neurochemistry.

[37]  M. Cookson,et al.  Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. , 2009, Biochemistry.

[38]  J. Cooper,et al.  Silencing of PINK1 Expression Affects Mitochondrial DNA and Oxidative Phosphorylation in DOPAMINERGIC Cells , 2009, PloS one.

[39]  H. McBride,et al.  MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission , 2009, EMBO reports.

[40]  B. Hyman,et al.  Tyrosine and serine phosphorylation of alpha-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. , 2009, The Journal of clinical investigation.

[41]  A. Whitworth,et al.  Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss , 2009, Nature Neuroscience.

[42]  D. Chan,et al.  Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases , 2009, Human molecular genetics.

[43]  Hui-yun Chang,et al.  The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons , 2010, Neurobiology of Disease.

[44]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[45]  N. Sokol,et al.  Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression , 2010, Nature.

[46]  R. Strauss,et al.  Behavioral consequences of dopamine deficiency in the Drosophila central nervous system , 2010, Proceedings of the National Academy of Sciences.

[47]  E. Matallana,et al.  Effects of pharmacological agents on the lifespan phenotype of Drosophila DJ-1beta mutants. , 2010, Gene.

[48]  A. Voigt,et al.  Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson's disease , 2010, Neurobiology of Disease.

[49]  M. Cookson,et al.  The Parkinson's Disease Associated LRRK2 Exhibits Weaker In Vitro Phosphorylation of 4E-BP Compared to Autophosphorylation , 2010, PloS one.

[50]  Laurie A Andrews,et al.  Decaffeinated Coffee and Nicotine-Free Tobacco Provide Neuroprotection in Drosophila Models of Parkinson's Disease through an NRF2-Dependent Mechanism , 2010, The Journal of Neuroscience.

[51]  A. Whitworth,et al.  Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin , 2010, Proceedings of the National Academy of Sciences.

[52]  B. Lu,et al.  Reduction of Protein Translation and Activation of Autophagy Protect against PINK1 Pathogenesis in Drosophila melanogaster , 2010, PLoS genetics.

[53]  R. Youle,et al.  Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin , 2010, The Journal of cell biology.

[54]  Xinnan Wang,et al.  PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility , 2011, Cell.

[55]  N. Paricio,et al.  Drosophila Models of Parkinson's Disease: Discovering Relevant Pathways and Novel Therapeutic Strategies , 2011, Parkinson's disease.

[56]  A. Whitworth,et al.  Drosophila models of Parkinson's disease. , 2011, Advances in genetics.

[57]  Kindiya D. Geghman,et al.  Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission , 2011, Proceedings of the National Academy of Sciences.

[58]  G. Sykiotis,et al.  Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease , 2011, Disease Models & Mechanisms.

[59]  M. Seaman The retromer complex – endosomal protein recycling and beyond , 2012, Journal of Cell Science.

[60]  Janaka N. Edirisinghe,et al.  Vitamin K2 Is a Mitochondrial Electron Carrier That Rescues Pink1 Deficiency , 2012, Science.

[61]  Shengdi Chen,et al.  Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. , 2012, Human molecular genetics.

[62]  W. Saxton,et al.  Parkinson's Disease–Associated Kinase PINK1 Regulates Miro Protein Level and Axonal Transport of Mitochondria , 2012, PLoS genetics.

[63]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[64]  A. Mamais,et al.  Phosphorylation of 4E-BP1 in the Mammalian Brain Is Not Altered by LRRK2 Expression or Pathogenic Mutations , 2012, PloS one.

[65]  P. Verstreken,et al.  LRRK2 Controls an EndoA Phosphorylation Cycle in Synaptic Endocytosis , 2012, Neuron.

[66]  P. Verstreken,et al.  The Yeast Complex I Equivalent NADH Dehydrogenase Rescues pink1 Mutants , 2012, PLoS genetics.

[67]  Christopher M. Dobson,et al.  Direct Observation of the Interconversion of Normal and Toxic Forms of α-Synuclein , 2012, Cell.

[68]  K. Venderová,et al.  Vacuolar protein sorting 35 (Vps35) rescues locomotor deficits and shortened lifespan in Drosophila expressing a Parkinson’s disease mutant of Leucine-rich repeat kinase 2 (LRRK2) , 2014, Molecular Neurodegeneration.

[69]  T. Schwarz Mitochondrial trafficking in neurons. , 2013, Cold Spring Harbor perspectives in biology.

[70]  T. Gasser,et al.  Leucine-rich repeat kinase 2 functionally interacts with microtubules and kinase-dependently modulates cell migration , 2013, Neurobiology of Disease.

[71]  Kiyoung Kim,et al.  Glutathione S-transferase omega suppresses the defective phenotypes caused by PINK1 loss-of-function in Drosophila. , 2013, Biochemical and biophysical research communications.

[72]  RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. , 2013, Neuron.

[73]  S. Tsuji,et al.  Expression of Human Gaucher Disease Gene GBA Generates Neurodevelopmental Defects and ER Stress in Drosophila Eye , 2013, PloS one.

[74]  L. Martins,et al.  Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease , 2013, Cell Death and Disease.

[75]  C. Elliott,et al.  Dopaminergic expression of the Parkinsonian gene LRRK2-G2019S leads to non-autonomous visual neurodegeneration, accelerated by increased neural demands for energy , 2013, Human molecular genetics.

[76]  E. Matallana,et al.  Antioxidant compound supplementation prevents oxidative damage in a Drosophila model of Parkinson's disease. , 2013, Free radical biology & medicine.

[77]  H. Steller,et al.  Unfolded protein response in Gaucher disease: from human to Drosophila , 2013, Orphanet Journal of Rare Diseases.

[78]  J. Hardy,et al.  The Parkinson’s disease genes Fbxo7 and Parkin interact to mediate mitophagy , 2013, Nature Neuroscience.

[79]  Gennifer E. Merrihew,et al.  The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo , 2013, Proceedings of the National Academy of Sciences.

[80]  H. Cai,et al.  A Direct Interaction between Leucine-rich Repeat Kinase 2 and Specific β-Tubulin Isoforms Regulates Tubulin Acetylation* , 2013, The Journal of Biological Chemistry.

[81]  A. Whitworth,et al.  TRAP1 rescues PINK1 loss-of-function phenotypes. , 2013, Human molecular genetics.

[82]  N. Strausfeld,et al.  Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia , 2013, Science.

[83]  A. Voigt,et al.  Analysis of dopaminergic neuronal dysfunction in genetic and toxin‐induced models of Parkinson's disease in Drosophila , 2014, Journal of neurochemistry.

[84]  A. Whitworth,et al.  The Complex I Subunit NDUFA10 Selectively Rescues Drosophila pink1 Mutants through a Mechanism Independent of Mitophagy , 2014, PLoS genetics.

[85]  Xinnan Wang,et al.  PINK1-mediated Phosphorylation of Miro Inhibits Synaptic Growth and Protects Dopaminergic Neurons in Drosophila , 2014, Scientific Reports.

[86]  J. Blesa,et al.  Parkinson’s disease: animal models and dopaminergic cell vulnerability , 2014, Front. Neuroanat..

[87]  H. McBride,et al.  A new pathway for mitochondrial quality control: mitochondrial‐derived vesicles , 2014, The EMBO journal.

[88]  Chia-Lung Chuang,et al.  Genetic dissection reveals that Akt is the critical kinase downstream of LRRK2 to phosphorylate and inhibit FOXO1, and promotes neuron survival. , 2014, Human molecular genetics.

[89]  K. Lim,et al.  Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila. , 2014, Human molecular genetics.

[90]  Jina Yun,et al.  MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin , 2014, eLife.

[91]  Nektarios Tavernarakis,et al.  Spermidine protects against α-synuclein neurotoxicity , 2014, Cell cycle.

[92]  A. Whitworth,et al.  Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations , 2014, Nature Communications.

[93]  N. Hattori,et al.  Detailed analysis of mitochondrial respiratory chain defects caused by loss of PINK1 , 2014, Neuroscience Letters.

[94]  P. Verstreken,et al.  PINK1 Loss-of-Function Mutations Affect Mitochondrial Complex I Activity via NdufA10 Ubiquinone Uncoupling , 2014, Science.

[95]  Aris Fiser,et al.  Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration , 2014, Human molecular genetics.

[96]  Christian Griesinger,et al.  α-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent manner , 2014, Neurobiology of Disease.

[97]  Sonia Gandhi,et al.  Enhancing nucleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 model of Parkinson’s disease , 2014, Nature Cell Biology.

[98]  M. Kumar,et al.  Ribosomal Protein s15 Phosphorylation Mediates LRRK2 Neurodegeneration in Parkinson’s Disease , 2014, Cell.

[99]  K. Winklhofer Parkin and mitochondrial quality control: toward assembling the puzzle. , 2014, Trends in cell biology.

[100]  H. McBride,et al.  Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control , 2014, The EMBO journal.

[101]  R. Swerdlow,et al.  LRRK2, a puzzling protein: Insights into Parkinson's disease pathogenesis , 2014, Experimental Neurology.

[102]  M. Guo,et al.  Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo , 2014, Disease Models & Mechanisms.

[103]  F. Schnorrer,et al.  Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants , 2014, The EMBO journal.

[104]  P. Cullen,et al.  Retromer Binding to FAM21 and the WASH Complex Is Perturbed by the Parkinson Disease-Linked VPS35(D620N) Mutation , 2014, Current Biology.

[105]  A. Takeda,et al.  VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease , 2014, Neurobiology of Disease.

[106]  A. Whitworth,et al.  VPS35 pathogenic mutations confer no dominant toxicity but partial loss of function in Drosophila and genetically interact with parkin , 2015, Human molecular genetics.

[107]  J. Hardy,et al.  Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction , 2015, Brain : a journal of neurology.

[108]  E. Masliah,et al.  Parkinson’s Disease Genes VPS35 and EIF4G1 Interact Genetically and Converge on α-Synuclein , 2023, Neuron.

[109]  J. Hayes,et al.  The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. , 2015, Biochemical Society transactions.

[110]  B. Wang,et al.  Nrf2 inducer and cncC overexpression attenuates neurodegeneration due to α-synuclein in Drosophila. , 2015, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[111]  J. Corvol,et al.  Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1 , 2015, The EMBO journal.

[112]  K. Wada,et al.  Glucocerebrosidase deficiency accelerates the accumulation of proteinase K-resistant α-synuclein and aggravates neurodegeneration in a Drosophila model of Parkinson's disease. , 2015, Human molecular genetics.

[113]  L. Mei,et al.  VPS35 Deficiency or Mutation Causes Dopaminergic Neuronal Loss by Impairing Mitochondrial Fusion and Function. , 2015, Cell reports.

[114]  C. Kyriacou,et al.  Rab11 modulates α-synuclein-mediated defects in synaptic transmission and behaviour , 2014, Human molecular genetics.

[115]  H. Kiyonari,et al.  The Parkinson’s Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway , 2015, PLoS Genetics.

[116]  R. Youle,et al.  The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease , 2015, Neuron.

[117]  P. Navas,et al.  Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan , 2016, Cell metabolism.

[118]  T. Montine,et al.  Glucocerebrosidase Deficiency in Drosophila Results in α-Synuclein-Independent Protein Aggregation and Neurodegeneration , 2016, PLoS genetics.

[119]  Matthias Mann,et al.  Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases , 2016, eLife.

[120]  Andrew B Singleton,et al.  Genetics in Parkinson disease: Mendelian versus non‐Mendelian inheritance , 2016, Journal of neurochemistry.

[121]  H. Steller,et al.  The contribution of mutant GBA to the development of Parkinson disease in Drosophila. , 2016, Human molecular genetics.

[122]  A. Whitworth,et al.  Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity , 2016, The Journal of Biological Chemistry.

[123]  Wenzhang Wang,et al.  Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes , 2015, Nature Medicine.