From softening polymers to multimaterial based bioelectronic devices

[1]  Jeong Hun Kim,et al.  Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. , 2016, Lab on a chip.

[2]  Guy A. E. Vandenbosch,et al.  An Integrated a-IGZO UHF Energy Harvester for Passive RFID Tags , 2014, IEEE Transactions on Electron Devices.

[3]  Stuart F Cogan,et al.  Thinking Small: Progress on Microscale Neurostimulation Technology , 2017, Neuromodulation : journal of the International Neuromodulation Society.

[4]  M. Vellekoop,et al.  A Simple Method to Allow Parylene-C Coatings on Gold Substrates , 2017 .

[5]  Robert L. Rennaker,et al.  Smart Polymers for Neural Interfaces , 2013 .

[6]  Haibao Lu,et al.  Temperature sensing and actuating capabilities of polymeric shape memory composite containing thermochromic particles , 2015 .

[7]  W. Grellmann,et al.  Fracture mechanics on polyethylene/polybutene-1 peel films , 2008 .

[8]  D. Ritson,et al.  Dielectric Properties of Aqueous Ionic Solutions. Parts I and II , 1948 .

[9]  A Cutrone,et al.  Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. , 2017, Biomaterials.

[10]  S. Lachhman,et al.  Multi-layered poly-dimethylsiloxane as a non-hermetic packaging material for medical MEMS , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[11]  C. Soles,et al.  Moisture absorption into ultrathin hydrophilic polymer films on different substrate surfaces , 2005 .

[12]  Robert L. Rennaker,et al.  A comparison of polymer substrates for photolithographic processing of flexible bioelectronics , 2013, Biomedical microdevices.

[13]  Weifeng Zhang,et al.  Fabrication and characterization of flexible Ag/ZnO Schottky diodes on polyimide substrates , 2013 .

[14]  Evaluation of adhesion promoters for Parylene C on gold metallization , 2015 .

[15]  Ning Zhang,et al.  Stretchable Polymeric Multielectrode Array for Conformal Neural Interfacing , 2013, Advanced materials.

[16]  Seyed Mahmoud Hosseini,et al.  Chronic softening spinal cord stimulation arrays , 2018, Journal of neural engineering.

[17]  Brian J. Kim,et al.  Parylene-Based Electrochemical-MEMS Force Sensor for Studies of Intracortical Probe Insertion Mechanics , 2015, Journal of Microelectromechanical Systems.

[18]  Young-Kyu Han,et al.  Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor. , 2016, Biosensors & bioelectronics.

[19]  B. Gnade,et al.  Full bridge circuit based on pentacene schottky diodes fabricated on plastic substrates , 2012 .

[20]  J. N. Murray Electrochemical test methods for evaluating organic coatings on metals: an update. Part I. Introduction and generalities regarding electrochemical testing of organic coatings , 1997 .

[21]  Sam Musallam,et al.  NeuroMEMS: Neural Probe Microtechnologies , 2008, Sensors.

[22]  A. Song,et al.  Flexible indium–gallium–zinc–oxide Schottky diode operating beyond 2.45 GHz , 2015, Nature Communications.

[23]  Daryl R. Kipke,et al.  The role of flexible polymer interconnects in chronic tissue response induced by intracortical microelectrodes - a modeling and an in vivo study , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[24]  Kinam Park,et al.  Foreign Body Response to Intracortical Microelectrodes Is Not Altered with Dip-Coating of Polyethylene Glycol (PEG) , 2017, Front. Neurosci..

[25]  F. Solzbacher,et al.  Characterization of a-SiC(x):H thin films as an encapsulation material for integrated silicon based neural interface devices. , 2007, Thin Solid Films.

[26]  W. Voit,et al.  Highly Stable Indium‐Gallium‐Zinc‐Oxide Thin‐Film Transistors on Deformable Softening Polymer Substrates , 2017 .

[27]  Mijail D. Serruya,et al.  Bottlenecks to clinical translation of direct brain-computer interfaces , 2014, Front. Syst. Neurosci..

[28]  Victor Pikov,et al.  Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes , 2016, Journal of neural engineering.

[29]  Allison M Stiller,et al.  Characterization of the Neuroinflammatory Response to Thiol-ene Shape Memory Polymer Coated Intracortical Microelectrodes , 2018, Micromachines.

[30]  J. George,et al.  Micropillar Electrode Array: From Metal to Dielectric Interface , 2015, IEEE Sensors Journal.

[31]  Joakim P. M. Jämbeck,et al.  Understanding the Ionic Conduction in Dielectric Polymers at High Electric Fields Using Molecular Dynamics Simulations , 2017 .

[32]  Georges Gielen,et al.  Gigahertz Operation of a-IGZO Schottky Diodes , 2013, IEEE Transactions on Electron Devices.

[33]  Igor A. Lavrov,et al.  Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording , 2008 .

[34]  Robert L. Rennaker,et al.  Fabrication of Responsive, Softening Neural Interfaces , 2012 .

[35]  K. Gall,et al.  Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization , 2008, Biomedical materials.

[36]  N. Rajeswari,et al.  Effect of mechanical, barrier and adhesion properties on oxygen plasma surface modified PP , 2015 .

[37]  David J. Barker,et al.  Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion , 2018, Journal of neural engineering.

[38]  Karen L. Smith,et al.  Ultrafast resorbing polymers for use as carriers for cortical neural probes. , 2011, Acta biomaterialia.

[39]  Seyeoul Kwon,et al.  Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics , 2017, Nanotechnology.

[40]  Yewang Su,et al.  Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Stéphanie P. Lacour,et al.  Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces , 2010, Medical & Biological Engineering & Computing.

[42]  M. Abidian,et al.  A Review of Organic and Inorganic Biomaterials for Neural Interfaces , 2014, Advanced materials.

[43]  A. Song,et al.  Room Temperature Processed Ultrahigh-Frequency Indium-Gallium–Zinc-Oxide Schottky Diode , 2016, IEEE Electron Device Letters.

[44]  Florin Ciuprina,et al.  Polyethylene crosslinking and water treeing , 2001 .

[45]  P. Renaud,et al.  Demonstration of cortical recording using novel flexible polymer neural probes , 2008 .

[46]  Bernard Kippelen,et al.  Top-gate organic field-effect transistors fabricated on shape-memory polymer substrates , 2015, SPIE Organic Photonics + Electronics.

[47]  Lily D. Chambers,et al.  Parylene conformal coating encapsulation as a method for advanced tuning of mechanical properties of an artificial hair cell , 2013 .

[48]  T. Ware,et al.  Hydrolytically Stable Thiol-ene Networks for Flexible Bioelectronics. , 2015, ACS applied materials & interfaces.

[49]  T. Stieglitz,et al.  Characterization of parylene C as an encapsulation material for implanted neural prostheses. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[50]  Allison M Stiller,et al.  In vitro compatibility testing of thiol-ene/acrylate-based shape memory polymers for use in implantable neural interfaces. , 2018, Journal of biomedical materials research. Part A.

[51]  W. Voit,et al.  Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces. , 2015, ACS applied materials & interfaces.

[52]  N. Koratkar,et al.  Fast Triggering of Shape Memory Polymers using an Embedded Carbon Nanotube Sponge Network , 2016, Scientific Reports.

[53]  Organic light-emitting diodes on shape memory polymer substrates for wearable electronics , 2015 .

[54]  R. Ghaffari,et al.  Recent Advances in Flexible and Stretchable Bio‐Electronic Devices Integrated with Nanomaterials , 2016, Advanced materials.

[55]  K. Mabuchi,et al.  Parylene flexible neural probes integrated with microfluidic channels. , 2005, Lab on a chip.

[56]  Ellis Meng,et al.  Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication , 2016, Micromachines.

[57]  G. E. Loeb,et al.  Cuff electrodes for chronic stimulation and recording of peripheral nerve activity , 1996, Journal of Neuroscience Methods.

[58]  Magnus Berggren,et al.  Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. , 2016, Chemical Reviews.

[59]  J. Muthuswamy,et al.  Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo , 2015, Journal of neural engineering.

[60]  Nancy Kopell,et al.  Heterogeneous neural amplifier integration for scalable extracellular microelectrodes , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[61]  D. Kipke,et al.  Neural probe design for reduced tissue encapsulation in CNS. , 2007, Biomaterials.

[62]  Krishna V Shenoy,et al.  Human cortical prostheses: lost in translation? , 2009, Neurosurgical focus.

[63]  Zoltán Fekete,et al.  Multifunctional soft implants to monitor and control neural activity in the central and peripheral nervous system: A review , 2017 .

[64]  H. Mark,et al.  Principles of Plasticization , 1965 .

[65]  J. Donoghue,et al.  Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates , 2013, Journal of neural engineering.

[66]  Andrew J Shoffstall,et al.  A Mosquito Inspired Strategy to Implant Microprobes into the Brain , 2018, Scientific Reports.

[67]  H. Stiegler,et al.  14 MHz organic diodes fabricated using photolithographic processes , 2007 .

[68]  J. Zemek,et al.  Surface properties of polyethylene after low-temperature plasma treatment , 2003 .

[69]  M. Gijs,et al.  Miniaturised Flexible Temperature Sensor , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[70]  J. Cholewicki,et al.  Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load–Displacement Curves , 2001, Spine.

[71]  Takao Someya,et al.  Development of flexible and wide-range polymer-based temperature sensor for human bodies , 2016, 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI).

[72]  Transfer of Mobile Ions from Aqueous Solutions to the Silicon Dioxide Surface , 1973 .

[73]  R. Hezel,et al.  Silicon Nitride in Encapsulation and Recrystallization , 1991 .

[74]  D. Kipke,et al.  Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain , 2009, Journal of Neuroscience Methods.

[75]  Z. Suo,et al.  A transparent bending-insensitive pressure sensor. , 2016, Nature nanotechnology.

[76]  Nicholas J Michelson,et al.  A Materials Roadmap to Functional Neural Interface Design , 2018, Advanced functional materials.

[77]  Soo Hyun Lee,et al.  Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering , 2010 .

[78]  M. Kaltenbrunner,et al.  Mechanically Adaptive Organic Transistors for Implantable Electronics , 2014, Advanced materials.

[79]  T. Stieglitz,et al.  Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces , 2000 .

[80]  G. Wallace,et al.  Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. , 2008, Biomaterials.

[81]  Timothy G. Constandinou,et al.  Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics , 2017, Front. Neurosci..

[82]  Jeong Hun Kim,et al.  Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device , 2011 .

[83]  Florian Solzbacher,et al.  Effect of thermal and deposition processes on surface morphology, crystallinity, and adhesion of Parylene-C , 2008 .

[84]  L. Yahia,et al.  Shape memory polymer foams for cerebral aneurysm reparation: effects of plasma sterilization on physical properties and cytocompatibility. , 2009, Acta biomaterialia.

[85]  Adrian J. T. Teo,et al.  Polymeric Biomaterials for Medical Implants and Devices. , 2016, ACS biomaterials science & engineering.

[86]  S. M. Hasan,et al.  Effects of Sterilization on Shape Memory Polyurethane Embolic Foam Devices. , 2017, Journal of medical devices.

[87]  D. Coulshed,et al.  Effect of radiation therapy on the latest generation of pacemakers and implantable cardioverter defibrillators: A systematic review , 2010, Journal of medical imaging and radiation oncology.

[88]  Joseph C Liao,et al.  Advances and challenges in biosensor-based diagnosis of infectious diseases , 2014, Expert review of molecular diagnostics.

[89]  Wei Zhang,et al.  Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. , 2010, ACS nano.

[90]  Jonathan Reeder,et al.  Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces. , 2012, Macromolecular materials and engineering.

[91]  W. Voit,et al.  Characterization of a Thiol-Ene/Acrylate-Based Polymer for Neuroprosthetic Implants , 2017, ACS omega.

[92]  Zulkifli Ahmad,et al.  Polymer Dielectric Materials , 2012 .

[93]  F. M. Gray,et al.  A Study of the dielectric properties of the polymer electrolyte PEO‐LiClO4 over a composition range using time domain spectroscopy , 1989 .

[94]  Yung-Hui Yeh,et al.  High-frequency polymer diode rectifiers for flexible wireless power-transmission sheets , 2011 .

[95]  Kasey Catt,et al.  Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. , 2015, Biomaterials.

[96]  T. Ware,et al.  Mechanical Cycling Stability of Organic Thin Film Transistors on Shape Memory Polymers , 2013, Advanced materials.

[97]  Yoon Kyeung Lee,et al.  Kinetics and Chemistry of Hydrolysis of Ultrathin, Thermally Grown Layers of Silicon Oxide as Biofluid Barriers in Flexible Electronic Systems. , 2017, ACS applied materials & interfaces.

[98]  Diana George,et al.  Removable silicon insertion stiffeners for neural probes using polyethylene glycol as a biodissolvable adhesive , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[99]  Thomas Stieglitz,et al.  On the use of Parylene C polymer as substrate for peripheral nerve electrodes , 2018, Scientific Reports.

[100]  S. Cogan Neural stimulation and recording electrodes. , 2008, Annual review of biomedical engineering.

[101]  Joseph E Marine,et al.  50th Anniversary of the first successful permanent pacemaker implantation in the United States: historical review and future directions. , 2010, The American journal of cardiology.

[102]  Christian Bergaud,et al.  In vitro and in vivo biostability assessment of chronically-implanted Parylene C neural sensors , 2017 .

[103]  Josef Goding,et al.  In vitro biological assessment of electrode materials for neural interfaces , 2015, 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER).

[104]  Jan Nedoma,et al.  Influence of PDMS encapsulation on the sensitivity and frequency range of fiber-optic interferometer , 2016, Security + Defence.

[105]  Justin C. Williams,et al.  Flexible polyimide-based intracortical electrode arrays with bioactive capability , 2001, IEEE Transactions on Biomedical Engineering.

[106]  Warren M Grill,et al.  Implanted neural interfaces: biochallenges and engineered solutions. , 2009, Annual review of biomedical engineering.

[107]  Georges Gielen,et al.  High-performance a-In-Ga-Zn-O Schottky diode with oxygen-treated metal contacts , 2012 .

[108]  A. Perry,et al.  Scratch adhesion testing of hard coatings , 1983 .

[109]  Svante Arrhenius,et al.  Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren , 1889 .

[110]  Gerald Urban,et al.  High-resolution thin-film temperature sensor arrays for medical applications , 1990 .

[111]  John A Rogers,et al.  Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics , 2015, Nature Biotechnology.

[112]  Diffusion of ions into polymers , 1988, Proceedings of the Twenty-First Symposium on Electrical Insulating Materials.

[113]  Rajmohan Bhandari,et al.  Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation , 2014, Journal of neural engineering.

[114]  Yanfeng Luo,et al.  In vitro degradation of poly(lactide-co-p-dioxanone)-based shape memory poly(urethane-urea) , 2010 .

[115]  Nitish V. Thakor,et al.  Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording , 2016, Medical & Biological Engineering & Computing.

[116]  John A. Rogers,et al.  Highly Bendable, Transparent Thin‐Film Transistors That Use Carbon‐Nanotube‐Based Conductors and Semiconductors with Elastomeric Dielectrics , 2006 .

[117]  Fan Zhang,et al.  A finite deformation model of planar serpentine interconnects for stretchable electronics. , 2016, International journal of solids and structures.

[118]  J. J. Siegel,et al.  Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration , 2017, Science Advances.

[119]  Christoph Weder,et al.  Progress towards biocompatible intracortical microelectrodes for neural interfacing applications , 2015, Journal of neural engineering.

[120]  A. Amirudin,et al.  Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals , 1995 .

[121]  W. Grill,et al.  Electrical properties of implant encapsulation tissue , 2006, Annals of Biomedical Engineering.

[122]  S.F. Cogan In vivo and In vitro Differences in the Charge-injection and Electrochemical Properties of Iridium Oxide Electrodes , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[123]  P. Tresco,et al.  Response of brain tissue to chronically implanted neural electrodes , 2005, Journal of Neuroscience Methods.

[124]  Florian Solzbacher,et al.  Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization. , 2014, Acta biomaterialia.

[125]  Stuart N. Baker,et al.  Newcastle University Eprints Date Deposited: 23 the Sinusoidal Probe: a New Approach to Improve Electrode Longevity , 2022 .

[126]  Hanlin Zhu,et al.  Nanofabricated Ultraflexible Electrode Arrays for High‐Density Intracortical Recording , 2018, Advanced science.

[127]  David C. Martin,et al.  A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex , 2005, Journal of neural engineering.

[128]  Gerald E Loeb,et al.  Accelerated life-test methods and results for implantable electronic devices with adhesive encapsulation , 2017, Biomedical microdevices.

[129]  Hamid Charkhkar,et al.  Design and demonstration of an intracortical probe technology with tunable modulus. , 2017, Journal of biomedical materials research. Part A.

[130]  Christopher L. Frewin,et al.  Sterilization of Thiol-ene/Acrylate Based Shape Memory Polymers for Biomedical Applications , 2017 .

[131]  Chen Zhu,et al.  Optimal design of self-similar serpentine interconnects embedded in stretchable electronics , 2017 .

[132]  V. Rajaraman,et al.  Robust Wafer-Level Thin-Film Encapsulation of Microstructures using Low Stress PECVD Silicon Carbide , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[133]  Juan Aceros,et al.  Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates , 2016, Journal of neural engineering.

[134]  Thomas Schmitz-Rode,et al.  A fast telemetric pressure and temperature sensor system for medical applications , 2007 .

[135]  Allison M Stiller,et al.  Softening Shape Memory Polymer Substrates for Bioelectronic Devices With Improved Hydrolytic Stability , 2018, Front. Mater..

[136]  N. Nishimura,et al.  Flexible microfluidic devices supported by biodegradable insertion scaffolds for convection-enhanced neural drug delivery , 2009, Biomedical microdevices.

[137]  G. Urban,et al.  Parylene-C as High Performance Encapsulation Material for Implantable Sensors , 2014 .

[138]  T. Stieglitz,et al.  Polymers for neural implants , 2011 .

[139]  H. Ohta,et al.  Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors , 2006 .

[140]  Mark A. Eckert,et al.  Novel Molecular and Nanosensors for In Vivo Sensing , 2013, Theranostics.

[141]  César Fernández-Sánchez,et al.  Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development , 2005 .

[142]  Jochen Guck,et al.  Materials and technologies for soft implantable neuroprostheses , 2016, Nature Reviews Materials.

[143]  Thomas Stieglitz,et al.  In vitro evaluation of the long-term stability of polyimide as a material for neural implants. , 2010, Biomaterials.

[144]  Walter Voit,et al.  Thiol-click chemistries for responsive neural interfaces. , 2013, Macromolecular bioscience.

[145]  Allison M Stiller,et al.  Chronic Intracortical Recording and Electrochemical Stability of Thiol-ene/Acrylate Shape Memory Polymer Electrode Arrays , 2018, Micromachines.

[146]  István Ulbert,et al.  A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology , 2015, PloS one.

[147]  John A. Rogers,et al.  Thin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for Implantable Flexible Electronic Systems , 2017 .

[148]  John A. Rogers,et al.  Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics , 2017 .

[149]  Silvestro Micera,et al.  Electronic dura mater for long-term multimodal neural interfaces , 2015, Science.

[150]  Aswini Kanneganti,et al.  Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation , 2018, Scientific Reports.

[151]  Jin-seong Park,et al.  Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors , 2009 .

[152]  L. Epstein,et al.  Managing chronic pain with spinal cord stimulation. , 2012, The Mount Sinai journal of medicine, New York.

[153]  Victor Krauthamer,et al.  Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species , 2015, Journal of neural engineering.

[154]  J. N. Murray Electrochemical test methods for evaluating organic coatings on metals: an update. Part III: Multiple test parameter measurements , 1997 .

[155]  Srikanth Vasudevan,et al.  Thiol-ene/acrylate substrates for softening intracortical electrodes. , 2014, Journal of biomedical materials research. Part B, Applied biomaterials.

[156]  Anish A. Sarma,et al.  Clinical translation of a high-performance neural prosthesis , 2015, Nature Medicine.

[157]  John A Rogers,et al.  Recent Advances in Materials, Devices, and Systems for Neural Interfaces , 2018, Advanced materials.

[158]  Rosa Villa,et al.  Study of functional viability of SU-8-based microneedles for neural applications , 2009 .

[159]  W. Voit,et al.  Effect of annealing atmosphere on IGZO thin film transistors on a deformable softening polymer substrate , 2018, Semiconductor Science and Technology.

[160]  Kip A Ludwig,et al.  Tissue damage thresholds during therapeutic electrical stimulation , 2016, Journal of neural engineering.

[161]  David C. Martin,et al.  Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays , 2005, Experimental Neurology.

[162]  K. Mabuchi,et al.  Ultraflexible, large-area, physiological temperature sensors for multipoint measurements , 2015, Proceedings of the National Academy of Sciences.

[163]  Benno Roozendaal,et al.  Rodent stereotaxic surgery and animal welfare outcome improvements for behavioral neuroscience. , 2012, Journal of visualized experiments : JoVE.

[164]  Vanessa M. Tolosa,et al.  Polymer neural interface with dual-sided electrodes for neural stimulation and recording , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.