Lower bounds for monotone counting circuits

A monotone arithmetic circuit computes a given multivariate polynomial f if its values on all nonnegative integer inputs are the same as those of f . The circuit counts f if this holds for 0-1 inputs; on other inputs, the circuit may output arbitrary values. The circuit decides f if it has the same 0-1 roots as f . We first show that some multilinear polynomials can be exponentially easier to count than to compute them, and that some polynomials can be exponentially easier to decide than to count them. Our main results are general lower bounds on the size of counting circuits.

[1]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[2]  Martin Tompa,et al.  A Direct Version of Shamir and Snir's Lower Bounds on Monotone Circuit Depth , 1994, Inf. Process. Lett..

[3]  Игорь Сергеевич Сергеев,et al.  Об одном методе получения нижних оценок сложности монотонных арифметических схем, вычисляющих действительные многочлены@@@A method for obtaining lower bounds for complexity of monotone arithmetic circuits computing real polynomials , 2012 .

[4]  Amir Yehudayoff,et al.  Homogeneous Formulas and Symmetric Polynomials , 2011, computational complexity.

[5]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[6]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[7]  T. Lindvall ON A ROUTING PROBLEM , 2004, Probability in the Engineering and Informational Sciences.

[8]  Marc Snir,et al.  Size-depth Trade-Offs for Monotone Arithmetic Circuits , 1991, Theor. Comput. Sci..

[9]  Stasys Jukna Combinatorics of Monotone Computations , 1998, Comb..

[10]  Stasys Jukna,et al.  Boolean Function Complexity Advances and Frontiers , 2012, Bull. EATCS.

[11]  Ran Raz,et al.  Multilinear Formulas, Maximal-Partition Discrepancy and Mixed-Sources Extractors , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[12]  Marc Snir,et al.  On the depth complexity of formulas , 1979, Mathematical systems theory.

[13]  Mark Jerrum,et al.  Some Exact Complexity Results for Straight-Line Computations over Semirings , 1982, JACM.

[14]  Igor S. Sergeev,et al.  A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials , 2012 .

[15]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[16]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[17]  D. E. Daykin,et al.  An inequality for the weights of two families of sets, their unions and intersections , 1978 .

[18]  Stephen A. Cook,et al.  An Exponential Lower Bound for the Size of Monotone Real Circuits , 1999, J. Comput. Syst. Sci..

[19]  L. R. Ford,et al.  NETWORK FLOW THEORY , 1956 .

[20]  Pavel Pudlák,et al.  Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.

[21]  H. Venkateswaran,et al.  A Lower Bound for Monotone Arithmetic Circuits Computing 0-1 Permanent , 1998, Theor. Comput. Sci..

[22]  Laurent Hyafil,et al.  On the parallel evaluation of multivariate polynomials , 1978, SIAM J. Comput..

[23]  Leslie G. Valiant,et al.  Negation can be exponentially powerful , 1979, Theor. Comput. Sci..

[24]  Claus-Peter Schnorr,et al.  A Lower Bound on the Number of Additions in Monotone Computations , 1976, Theor. Comput. Sci..

[25]  L. R. Kerr The Effect of Algebraic Structure on the Computational Complexity of Matrix Multiplication , 1970 .

[26]  Leslie G. Valiant,et al.  A complexity theory based on Boolean algebra , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[27]  Leslie G. Valiant,et al.  A complexity theory based on Boolean algebra , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[28]  Stasys Jukna Lower Bounds for Tropical Circuits and Dynamic Programs , 2014, Theory of Computing Systems.

[29]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[30]  V. Strassen Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten , 1973 .