Copy-move forgery detection using multiresolution local binary patterns.

[1]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[2]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[3]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[4]  Ingemar J. Cox,et al.  A Review of of Watermarking Principles and Practices , 1999 .

[5]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Ingemar J. Cox,et al.  Digital Watermarking , 2003, Lecture Notes in Computer Science.

[7]  M. Pietikäinen,et al.  A discriminative feature space for detecting and recognizing faces , 2004, CVPR 2004.

[8]  Jessica Fridrich,et al.  Detection of Copy-Move Forgery in Digital Images , 2004 .

[9]  M. Pietikäinen,et al.  FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS AND LINEAR PROGRAMMING , 2004 .

[10]  Chak-Kuen Wong,et al.  Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees , 1977, Acta Informatica.

[11]  J. Fridrich,et al.  Secure Digital Camera , 2004 .

[12]  M. Pietikäinen,et al.  Facial Expression Recognition with Local Binary Patterns and Linear Programming 1 , 2005 .

[13]  Matti Pietikäinen,et al.  Block-Based Methods for Image Retrieval Using Local Binary Patterns , 2005, SCIA.

[14]  Shih-Fu Chang,et al.  Columbia Photographic Images and Photorealistic Computer Graphics Dataset , 2005 .

[15]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Babak Mahdian,et al.  Detection of copy-move forgery using a method based on blur moment invariants. , 2007, Forensic science international.

[18]  Qiong Wu,et al.  A Sorted Neighborhood Approach for Detecting Duplicated Regions in Image Forgeries Based on DWT and SVD , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[19]  Yu Zhang,et al.  Detection of Copy-Move Forgery in Digital Images Using SIFT Algorithm , 2008, 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application.

[20]  H. Farid A Survey of Image Forgery Detection , 2008 .

[21]  H. Farid,et al.  Image forgery detection , 2009, IEEE Signal Processing Magazine.

[22]  Nasir D. Memon,et al.  An efficient and robust method for detecting copy-move forgery , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[23]  Xunyu Pan,et al.  Region Duplication Detection Using Image Feature Matching , 2010, IEEE Transactions on Information Forensics and Security.

[24]  Heung-Kyu Lee,et al.  Detection of Copy-Rotate-Move Forgery Using Zernike Moments , 2010, Information Hiding.

[25]  Anderson Rocha,et al.  Vision of the unseen: Current trends and challenges in digital image and video forensics , 2011, CSUR.

[26]  Wei Sun,et al.  Improved DCT-based detection of copy-move forgery in images. , 2011, Forensic science international.

[27]  Alberto Del Bimbo,et al.  Ieee Transactions on Information Forensics and Security 1 a Sift-based Forensic Method for Copy-move Attack Detection and Transformation Recovery , 2022 .

[28]  Asoke K. Nandi,et al.  Automated detection and localisation of duplicated regions affected by reflection, rotation and scaling in image forensics , 2011, Signal Process..

[29]  Tiegang Gao,et al.  A robust detection algorithm for copy-move forgery in digital images. , 2012, Forensic science international.

[30]  Mengjia Xu,et al.  Image region duplication detection based on circular window expansion and phase correlation. , 2012, Forensic science international.

[31]  Guizhong Liu,et al.  Scale- and Rotation-Invariant Local Binary Pattern Using Scale-Adaptive Texton and Subuniform-Based Circular Shift , 2012, IEEE Transactions on Image Processing.