Sulfur encapsulated in porous hollow CNTs@CNFs for high-performance lithium–sulfur batteries

Significant challenges for the commercialization of a lithium–sulfur battery include its rapid capacity fading and low power capability. Encapsulating the sulfur in pores of small volume of a porous carbon material alleviates this problem. We report a carbon–sulfur nanoarchitecture that encapsulates sulfur in porous hollow carbon-nanotubes@carbon-nanofibers (CNTs@CNFs) with a high Brunauer–Emmett–Teller (BET) specific surface area of 1400 m2 g−1 and a total pore volume of 1.12 cm3 g−1. As a cathode, this material with 55 wt.% sulfur shows a high capacity of ∼1313 mA h g−1 at 0.2 C, 1078 mA h g−1 at 0.5 C, 878 mA h g−1 at 1 C, 803 mA h g−1 at 1.5 C, 739 mA h g−1 at 2 C, and 572 mA h g−1 at 5 C, and maintains ∼700 mA h g−1 at 1 C after 100 cycles and 430 mA h g−1 at 5 C after 200 cycles, which makes it a superior cathode material for a rechargeable Li–S battery.

[1]  Haitao Huang,et al.  Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[2]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[3]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[4]  Guangyuan Zheng,et al.  Nanostructured sulfur cathodes. , 2013, Chemical Society reviews.

[5]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[6]  L. Archer,et al.  Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. , 2013, Journal of the American Chemical Society.

[7]  Ya‐Xia Yin,et al.  Smaller sulfur molecules promise better lithium-sulfur batteries. , 2012, Journal of the American Chemical Society.

[8]  Y. Mai,et al.  In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries. , 2012, Nanoscale.

[9]  Feng Li,et al.  A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries , 2012 .

[10]  X. Lou,et al.  Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. , 2012, Angewandte Chemie.

[11]  Li Min Zhou,et al.  Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries , 2012 .

[12]  Jiulin Wang,et al.  Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries , 2012 .

[13]  L. Nazar,et al.  Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. , 2012, Angewandte Chemie.

[14]  Jun Liu,et al.  A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium‐Sulfur Batteries with Long Cycle Life , 2012, Advanced materials.

[15]  Lei Wang,et al.  Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells , 2011 .

[16]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[17]  Yi Cui,et al.  Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. , 2011, Nano letters.

[18]  L. Nazar,et al.  High “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons , 2011 .

[19]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[20]  Xiulei Ji,et al.  Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. , 2011, Nature Communications.

[21]  Li Li,et al.  Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries , 2011 .

[22]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[23]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[24]  Yan Yu,et al.  Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. , 2009, Journal of the American Chemical Society.

[25]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[26]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[27]  Shichao Zhang,et al.  Nano-wire networks of sulfur–polypyrrole composite cathode materials for rechargeable lithium batteries , 2008 .

[28]  Jing Sun,et al.  Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries , 2008 .

[29]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[30]  Yongju Jung,et al.  New approaches to improve cycle life characteristics of lithium-sulfur cells , 2007 .

[31]  Jing-ying Xie,et al.  All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes , 2004 .

[32]  Mietek Jaroniec,et al.  Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure , 2000 .

[33]  L. Manring,et al.  Thermal degradation of saturated poly(methyl methacrylate) , 1988 .

[34]  J. E. Brown,et al.  Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates) , 1986 .

[35]  C. Tipper,et al.  The burning of polymers , 1969 .

[36]  Jean-Marie Tarascon,et al.  Li–S batteries: simple approaches for superior performance , 2013 .