Anomalous elastic behavior in Cu2O under pressure

The elastic constants Cij of single-crystal Cu2O measured to 3 kbar show linear variation with pressure. The best-fit values of the Cij and dCij/dP are: C11 = 1228.8, C44 = 121.0, C′ = (C11–C12)/2 = 81.9 kbar, dC11/dP = 3.62, dC44/dP = −0.69, and dC′/dP = −0.63, respectively. The elastic behavior of Cu2O is found to be anomalous in that dC44/dP and dC′/dP are both negative, and dμ/dP, where μ is the isotropic shear modulus, is significantly negative (−0.67). This anomalous behavior suggests an instability of crystal structure. The high- and low-temperature limiting values of Gruneisen γ, γH and γL, computed from the dCij/dP are −1.98 and −3.59, respectively. The value of γH is in fairly good agreement with the reported Gruneisen γ value based on the nuclear quadrupole relaxation data. The negative Gruneisen γ values are consistent with the observed negative thermal expansion. The implication of γL being appreciable more negative than γH is that the coefficient of thermal expansion of Cu2O should become more negative at low temperatures. Die elastischen Konstanten Cij von Cu2O-Einkristallen zeigen bis 3 kbar eine lineare Abhangigkeit vom Druck. Die die beste Anpassung ergebenden Werte fur Cij und dCij/dP sind: C11 = 1228,8; C44 = 121,0; C′ = (C11–C12)/2 = 81,9 kbar; dC11/dP = 3,62; dC44/dP = = −0,69 und dC′/dP = −0,63. Es wird gefunden, das das elastische Verhalten von Cu2O anomal ist, indem dC44/dP und dC′/dP negativ sind, und dμ/dP, wobei μ der isotrope Schubmodul ist, betrachtlich negativ (−0,67) ist. Diese Anomalie weist auf eine Instabilitat der Kristallstruktur hin. Die aus dCij/dP berechneten Hoch- und Tieftemperaturgrenzwerte γH und γL des Gruneisenparameters γ betragen −1,98 bzw. −3,59. Der Wert von γH ist in recht guter Ubereinstimmung mit anderen Gruneisen γ-Werten, die auf Kernquadrupol-Relaxationsdaten basieren. Die negativen γ-Werte sind konsistent mit der beobachteten negativen thermischen Ausdehnung. Aus der Tatsache, das γL betrachtlich starker negativ ist als γH kann geschlossen werden, das der Koeffizient der thermischen Ausdehnung von Cu2O bei tiefen Temperaturen starker negativ wird.

[1]  M. Tapiero,et al.  Electrical Conductivity and Thermal Activation Energies in Cu2O Single Crystals , 1972, August 16.

[2]  M. Balkanski,et al.  Light Scattering and Infrared Absorption in Cuprous Oxide , 1972 .

[3]  C. Carabatos,et al.  Rigid ion model lattice dynamics of cuprite (Cu2O) , 1971 .

[4]  W. Brower,et al.  Growth of single crystal cuprous oxide , 1971 .

[5]  R. C. Hanson,et al.  The elastic constants of cuprous oxide , 1970 .

[6]  C. Carabatos Lattice Vibrations of Cu2O at the Long Wave Limit , 1970 .

[7]  Murli H. Manghnani,et al.  Elastic constants of single‐crystal rutile under pressures to 7.5 kilobars , 1969 .

[8]  D. Gerlich Elastic Grüneisen parameters in crystals of low symmetry , 1969 .

[9]  K. R. Jeffrey,et al.  Pressure dependence of nuclear quadrupole relaxation. I. 63Cu relaxation in cuprous oxide , 1969 .

[10]  Y. Hiki,et al.  Anharmonicity in Noble Metals: Some Thermal Properties , 1967 .

[11]  R. N. Thurston,et al.  Third-Order Elastic Coefficients of Quartz , 1966 .

[12]  R. N. Thurston Ultrasonic data and the thermodynamics of solids , 1965 .

[13]  K. Brugger Generalized Grüneisen Parameters in the Anisotropic Debye Model , 1965 .

[14]  Charles S. Smith,et al.  Low temperature thermal expansion of RbI , 1964 .

[15]  J. G. Collins On the calculation of the temperature variation of the coefficient of thermal expansion for materials of cubic structure , 1963 .

[16]  W. Overton Relation between Ultrasonically Measured Properties and the Coefficients in the Solid Equation of State , 1962 .

[17]  D. Trivich,et al.  Electrical Conductivity of Single-Crystal Cuprous Oxide at High Temperatures , 1961 .

[18]  H. J. Mcskimin,et al.  Pulse Superposition Method for Measuring Ultrasonic Wave Velocities in Solids , 1961 .

[19]  Tadasu Suzuki X-Ray Study on the Binding Properties of Cu 2 O and Ag 2 O Crystals , 1960 .

[20]  F. Sheard Calculation of the thermal expansion of solids from the third-order elastic constants , 1958 .

[21]  N. Bloembergen,et al.  THE DEPENDENCE OF THE PURE QUADRUPOLE RESONANCE FREQUENCY ON PRESSURE AND TEMPERATURE , 1956 .