Why Asynchronous Parallel Evolution is the Future of Hyper-heuristics: A CDCL SAT Solver Case Study
暂无分享,去创建一个
[1] A. E. Eiben,et al. Introduction to Evolutionary Computing , 2003, Natural Computing Series.
[2] Mark Harman,et al. Applying Genetic Improvement to MiniSAT , 2013, SSBSE.
[3] Armando Tacchella,et al. Theory and Applications of Satisfiability Testing: 6th International Conference, Sat 2003, Santa Margherita Ligure, Italy, May 5-8 2003: Selected Revised Papers (Lecture Notes in Computer Science, 2919) , 2004 .
[4] Alex S. Fukunaga,et al. Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.
[5] Lothar Thiele,et al. Multiobjective genetic programming: reducing bloat using SPEA2 , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).
[6] Kevin Leyton-Brown,et al. Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.
[7] Enrique Alba,et al. Analyzing synchronous and asynchronous parallel distributed genetic algorithms , 2001, Future Gener. Comput. Syst..
[8] Enrique Alba,et al. Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..
[9] Alex S. Fukunaga,et al. Evolving Local Search Heuristics for SAT Using Genetic Programming , 2004, GECCO.
[10] Riccardo Poli,et al. A Field Guide to Genetic Programming , 2008 .
[11] Alex S. Fukunaga,et al. Massively parallel evolution of SAT heuristics , 2009, 2009 IEEE Congress on Evolutionary Computation.
[12] Andrew Philippides,et al. Tool sequence optimization using synchronous and asynchronous parallel multi-objective evolutionary algorithms with heterogeneous evaluations , 2013, 2013 IEEE Congress on Evolutionary Computation.
[13] Daniel R. Tauritz,et al. Asynchronous Parallel Evolutionary Algorithms: Leveraging Heterogeneous Fitness Evaluation Times for Scalability and Elitist Parsimony Pressure , 2015, GECCO.
[14] Bastien Chopard,et al. Parallel Genetic Programming and its Application to Trading Model Induction , 1997, Parallel Comput..
[15] Marc Schoenauer,et al. Asynchronous master/slave moeas and heterogeneous evaluation costs , 2012, GECCO '12.
[16] Daniel R. Tauritz,et al. Hyper-Heuristics: A Study On Increasing Primitive-Space , 2015, GECCO.
[17] Armin Biere,et al. Evaluating CDCL Restart Schemes , 2018, POS@SAT.
[18] Enrique Alba,et al. Parallel evolutionary algorithms can achieve super-linear performance , 2002, Inf. Process. Lett..
[19] Marius Thomas Lindauer,et al. SpySMAC: Automated Configuration and Performance Analysis of SAT Solvers , 2015, SAT.
[20] Riccardo Poli,et al. Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic Framework , 2007, Artificial Evolution.
[21] Marc Schoenauer,et al. Asynchronous Evolutionary Multi-Objective Algorithms with heterogeneous evaluation costs , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).
[22] Armin Biere,et al. Evaluating CDCL Variable Scoring Schemes , 2015, SAT.
[23] Kenneth A. De Jong,et al. Evaluation-Time Bias in Asynchronous Evolutionary Algorithms , 2015, GECCO.
[24] Niklas Sörensson,et al. An Extensible SAT-solver , 2003, SAT.
[25] Daniel R. Tauritz,et al. A problem configuration study of the robustness of a black-box search algorithm hyper-heuristic , 2014, GECCO.
[26] Mark Harman,et al. Using Genetic Improvement and Code Transplants to Specialise a C++ Program to a Problem Class , 2014, EuroGP.
[27] Julian F. Miller,et al. What bloat? Cartesian Genetic Programming on Boolean problems , 2003 .
[28] Enrique Alba,et al. A study of master-slave approaches to parallelize NSGA-II , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.
[29] Daniel R. Tauritz,et al. Multi-sample evolution of robust black-box search algorithms , 2014, GECCO.
[30] You Li,et al. Optimizing the Initialization of Dynamic Decision Heuristics in DPLL SAT Solvers Using Genetic Programming , 2006, EuroGP.