A Comparison of Spatio-temporal Interpolation Methods

This paper analyzes spatio-temporal interpolation methods based on shape functions, namely, the ST product and the tetrahedral methods. These methods yield data that can be represented and queried in constraint database systems. That is an advantage, because there are many constraint database queries that are not expressible in current geographic information systems. We illustrate and test our approach on an actual real estate database. The interpolations for house prices per square foot are compared on accuracy, storage requirement, error-proneness to time aggregation, and difficulty of representation. It is shown that the best method yields a spatio-temporal interpolation that estimates house prices (per square foot) with approximately 10 percent error, is less error-prone, and uses only linear constraints, which can be implemented in several recent constraint database systems.

[1]  S. Louis Hakimi,et al.  Fitting polygonal functions to a set of points in the plane , 1991, CVGIP Graph. Model. Image Process..

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Ralf Hartmut Güting,et al.  Creating Representations for Continuously Moving Regions from Observations , 2001, SSTD.

[4]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[5]  Robert Laurini,et al.  9 – Design for Information Systems: Methodologies, issues , 1992 .

[6]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[7]  Lixin Li,et al.  Representation and Querying of Interpolation Data in Constraint Databases , 2002, DG.O.

[8]  Min Ouyang,et al.  Approximate query evaluation using linear constraint databases , 2001, Proceedings Eighth International Symposium on Temporal Representation and Reasoning. TIME 2001.

[9]  Gabriel M. Kuper,et al.  Constraint Query Languages , 1995, J. Comput. Syst. Sci..

[10]  Peter Z. Revesz,et al.  Parametric Rectangles: A Model for Querying and Animation of Spatiotemporal Databases , 2000, EDBT.

[11]  Ralf Hartmut Güting,et al.  A data model and data structures for moving objects databases , 2000, SIGMOD '00.

[12]  Michael N. DeMers,et al.  Fundamentals of Geographic Information Systems , 1996 .

[13]  R. Webster,et al.  Kriging: a method of interpolation for geographical information systems , 1990, Int. J. Geogr. Inf. Sci..

[14]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[15]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[16]  Lixin Li,et al.  Constraint-based visualization of spatial interpolation data , 2002, Proceedings Sixth International Conference on Information Visualisation.

[17]  Min Ouyang,et al.  Approximating Data in Constraint Databases , 2000, SARA.

[18]  Duane C. Hanselman,et al.  Mastering MATLAB 5: A Comprehensive Tutorial and Reference , 1995 .

[19]  Gabriel M. Kuper,et al.  Constraint Databases , 2010, Springer Berlin Heidelberg.

[20]  Peter Z. Revesz,et al.  Introduction to Constraint Databases , 2002, Texts in Computer Science.

[21]  Roland H. C. Yap,et al.  The CLP( R ) language and system , 1992, TOPL.

[22]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[23]  Nabil R. Adam,et al.  Database Issues in Geographic Information Systems , 2012, Advances in Database Systems.

[24]  N. Lam Spatial Interpolation Methods: A Review , 1983 .

[25]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[26]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[27]  Stéphane Grumbach,et al.  Manipulating Interpolated Data is Easier than You Thought , 2000, VLDB.

[28]  Derek Thompson,et al.  Fundamentals of spatial information systems , 1992, A.P.I.C. series.

[29]  Michael F. Worboys,et al.  GIS : a computing perspective , 2004 .