Recent Developments in CAD/analysis Integration

For linear elastic problems, it is well-known that mesh generation dominates the total analysis time. Different types of methods have been proposed to directly or indirectly alleviate this burden associated with mesh generation. We review in this paper a subset of such methods centred on tighter coupling between computer aided design (CAD) and analysis (finite element or boundary element methods). We focus specifically on frameworks which rely on constructing a discretisation directly from the functions used to describe the geometry of the object in CAD. Examples include B-spline subdivision surfaces, isogeometric analysis, NURBS-enhanced FEM and parametric-based implicit boundary definitions. We review recent advances in these methods and compare them to other paradigms which also aim at alleviating the burden of mesh generation in computational mechanics.

[1]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[2]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[3]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[4]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[5]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[6]  B Notarberardino,et al.  An efficient approach to converting three-dimensional image data into highly accurate computational models , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[8]  G. S. Sekhon,et al.  Large Deformation -I , 2003 .

[9]  T. Weiland,et al.  Polygonal finite elements , 2006, IEEE Transactions on Magnetics.

[10]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[11]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[12]  Carl Ollivier-Gooch,et al.  A comparison of tetrahedral mesh improvement techniques , 1996 .

[13]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[14]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[15]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[16]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[17]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[18]  Frank J. Rizzo,et al.  An integral equation approach to boundary value problems of classical elastostatics , 1967 .

[19]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[20]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[21]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[22]  Thomas J. R. Hughes,et al.  An isogeometric analysis approach to gradient damage models , 2011 .

[23]  Ewald Krämer,et al.  A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows , 2008 .

[24]  Josep Sarrate,et al.  Efficient unstructured quadrilateral mesh generation , 2000 .

[25]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[26]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[27]  Niels Leergaard Pedersen,et al.  Discretizations in isogeometric analysis of Navier-Stokes flow , 2011 .

[28]  Antonio Huerta,et al.  NURBS-Enhanced Finite Element Method ( NEFEM ) A Seamless Bridge Between CAD and FEM , 2012 .

[29]  Manfred Bischoff,et al.  Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .

[30]  Jerzy Pamin,et al.  Two gradient plasticity theories discretized with the element-free Galerkin method , 2003 .

[31]  Katia Mocellin,et al.  A new efficient explicit formulation for linear tetrahedral elements non‐sensitive to volumetric locking for infinitesimal elasticity and inelasticity , 2009 .

[32]  Leonard McMillan,et al.  Simplification and improvement of tetrahedral models for simulation , 2004, SGP '04.

[33]  Jason F. Shepherd,et al.  Hexahedral mesh generation constraints , 2008, Engineering with Computers.

[34]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[35]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[36]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[37]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[38]  S. Sutharshana,et al.  Automatic three-dimensional mesh generation by the modified-octree technique: Yerry M A and Shepard, M SInt. J. Numer. Methods Eng. Vol 20 (1984) pp 1965–1990 , 1985 .

[39]  Panagiotis D. Kaklis,et al.  An isogeometric BEM for exterior potential-flow problems in the plane , 2009, Symposium on Solid and Physical Modeling.

[40]  Guirong Liu A GENERALIZED GRADIENT SMOOTHING TECHNIQUE AND THE SMOOTHED BILINEAR FORM FOR GALERKIN FORMULATION OF A WIDE CLASS OF COMPUTATIONAL METHODS , 2008 .

[41]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[43]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[44]  C. Lawson Software for C1 interpolation , 1977 .

[45]  T. Belytschko,et al.  Adaptivity for structured meshfree particle methods in 2D and 3D , 2005 .

[46]  J. Bonet,et al.  A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications , 1998 .

[47]  Oleg Davydov,et al.  Adaptive meshless centres and RBF stencils for Poisson equation , 2011, J. Comput. Phys..

[48]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[49]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[50]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[51]  K. Y. Dai,et al.  Theoretical aspects of the smoothed finite element method (SFEM) , 2007 .

[52]  L. Demkowicz,et al.  CONTROL OF GEOMETRY INDUCED ERROR IN hp FINITE ELEMENT(FE) SIMULATIONS I. EVALUATION OF FE ERROR FOR CURVILINEAR GEOMETRIES , 2005 .

[53]  Paul Steinmann,et al.  Isogeometric analysis of 2D gradient elasticity , 2011 .

[54]  Sung-Kie Youn,et al.  Shape optimization and its extension to topological design based on isogeometric analysis , 2010 .

[55]  Ronald Maier,et al.  Integrated Modeling , 2011, Encyclopedia of Knowledge Management.

[56]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[57]  W. Shyy,et al.  Regular Article: An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries , 1999 .

[58]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[59]  Hung Nguyen-Xuan,et al.  A novel Galerkin-like weakform and a superconvergent alpha finite element method (SαFEM) for mechanics problems using triangular meshes , 2009, J. Comput. Phys..

[60]  R. Maccormack,et al.  Simplified numerical methods for gasdynamic systems on triangulated domains , 1998 .

[61]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[62]  T. Rabczuk,et al.  Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment , 2008 .

[63]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[64]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[65]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[66]  N. Valizadeh,et al.  Extended isogeometric analysis for simulation of stationary and propagating cracks , 2012 .

[67]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[68]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[69]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[70]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[71]  P. Wriggers,et al.  A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .

[72]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[73]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[74]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[75]  Thomas J. R. Hughes,et al.  Isogeometric Failure Analysis , 2011 .

[76]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[77]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[78]  S. Wagner,et al.  Three-Dimensional Discontinuous Galerkin Codes to Simulate Viscous Flow by Spatial Discretization of High Order and Curved Elements on Unstructured Grids , 2007 .

[79]  H. van der Ven,et al.  Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. Part II. Efficient flux quadrature , 2002 .

[80]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[81]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[82]  A. Huerta,et al.  NURBS-Enhanced Finite Element Method (NEFEM) , 2011 .

[83]  Matthew L. Staten,et al.  Unconstrained Paving & Plastering: A New Idea for All Hexahedral Mesh Generation , 2005, IMR.

[84]  T Belytschko,et al.  Structured Extended Finite Element Methods of Solids Defined by Implicit Surfaces , 2002 .

[85]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[86]  S. Biringen,et al.  Numerical Simulation of a Cylinder in Uniform Flow , 1996 .

[87]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[88]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[89]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[90]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[91]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[92]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[93]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[94]  R. Cárdenas NURBS-Enhanced Finite Element Method (NEFEM) , 2009 .

[95]  Sung-Kie Youn,et al.  Isogeometric contact analysis using mortar method , 2012 .

[96]  Vadim Shapiro,et al.  Geometric Issues in Computer Aided Design/Computer Aided Engineering Integration , 2011, J. Comput. Inf. Sci. Eng..

[97]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[98]  Carla Manni,et al.  Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..

[99]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[100]  T. Hughes,et al.  Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .

[101]  Guirong Liu,et al.  A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh , 2009 .

[102]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[103]  Ronaldo I. Borja Multiscale and Multiphysics Processes in Geomechanics , 2011 .

[104]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[105]  R. J. Alwood,et al.  A polygonal finite element for plate bending problems using the assumed stress approach , 1969 .

[106]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[107]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[108]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[109]  Hung Nguyen-Xuan,et al.  An alternative alpha finite element method (AαFEM) for free and forced structural vibration using triangular meshes , 2010, J. Comput. Appl. Math..

[110]  Zafer Gürdal,et al.  Isogeometric sizing and shape optimisation of beam structures , 2009 .

[111]  G. Sangalli,et al.  IsoGeometric analysis using T-splines on two-patch geometries , 2011 .

[112]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[113]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[114]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..

[115]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[116]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[117]  T. Belytschko,et al.  X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .

[118]  Seung-Hyun Ha,et al.  Isogeometric shape design optimization: exact geometry and enhanced sensitivity , 2009 .

[119]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[120]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[121]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[122]  O. Zienkiewicz,et al.  A new approach to the development of automatic quadrilateral mesh generation , 1991 .

[123]  E. Aifantis,et al.  Numerical modeling of size effects with gradient elasticity - Formulation, meshless discretization and examples , 2002 .

[124]  Stéphane Bordas,et al.  Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces , 2011 .

[125]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[126]  Sung-Kie Youn,et al.  T‐spline finite element method for the analysis of shell structures , 2009 .

[127]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[128]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[129]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[130]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[131]  Paresh Parikh,et al.  Interactive generation of unstructured grids for three dimensional problems , 1988 .

[132]  Jia Lu,et al.  Isogeometric contact analysis: Geometric basis and formulation for frictionless contact , 2011 .

[133]  Anath Fischer,et al.  New B‐Spline Finite Element approach for geometrical design and mechanical analysis , 1998 .

[134]  Yasushi Ito,et al.  Octree‐based reasonable‐quality hexahedral mesh generation using a new set of refinement templates , 2009 .

[135]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[136]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[137]  Antonio Huerta,et al.  Comparison of high‐order curved finite elements , 2011 .

[138]  Gabriel Bugeda,et al.  An integration of a low cost adaptive remeshing strategy in the solution of structural shape optimization problems using evolutionary methods , 2008 .

[139]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[140]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[141]  John A. Evans,et al.  Isogeometric Analysis , 2010 .

[142]  Annalisa Buffa,et al.  Isogeometric Analysis for Electromagnetic Problems , 2010, IEEE Transactions on Magnetics.

[143]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[144]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[145]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[146]  Sung-Kie Youn,et al.  Isogeometric topology optimization using trimmed spline surfaces , 2010 .

[147]  Marino Arroyo,et al.  On the optimum support size in meshfree methods: A variational adaptivity approach with maximum‐entropy approximants , 2010 .

[148]  Yongjie Zhang,et al.  Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data. , 2006, Computer methods in applied mechanics and engineering.

[149]  Elaine Cohen,et al.  Volumetric parameterization of complex objects by respecting multiple materials , 2010, Comput. Graph..

[150]  R. Borst Computational Multi-Scale Methods and Evolving Discontinuities , 2009 .

[151]  Guirong Liu,et al.  A face‐based smoothed finite element method (FS‐FEM) for 3D linear and geometrically non‐linear solid mechanics problems using 4‐node tetrahedral elements , 2009 .

[152]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[153]  Bernard Grossman,et al.  Surface boundary conditions for the numerical solution of the Euler equations , 1994 .

[154]  Ted Belytschko,et al.  Material stability analysis of particle methods , 2005, Adv. Comput. Math..

[155]  Anh-Vu Vuong,et al.  ISOGAT: A 2D tutorial MATLAB code for Isogeometric Analysis , 2010, Comput. Aided Geom. Des..

[156]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[157]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[158]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[159]  Jia Lu,et al.  Circular element: Isogeometric elements of smooth boundary , 2009 .

[160]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[161]  K. Y. Dai,et al.  An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .

[162]  Wolfgang Nitsche,et al.  New Results in Numerical and Experimental Fluid Mechanics , 1999 .

[163]  Hans-Peter Seidel,et al.  A General Framework for Mesh Decimation , 1998, Graphics Interface.

[164]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[165]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[166]  T. Hughes,et al.  ISOGEOMETRIC METHODS IN STRUCTURAL DYNAMICS AND WAVE PROPAGATION , 2009 .