The oncolytic peptide LTX-315 overcomes resistance of cancers to immunotherapy with CTLA4 checkpoint blockade

[1]  J. Mirjolet,et al.  Discovery of a 9-mer Cationic Peptide (LTX-315) as a Potential First in Class Oncolytic Peptide. , 2016, Journal of medicinal chemistry.

[2]  L. Zitvogel,et al.  The oncolytic peptide LTX-315 triggers immunogenic cell death , 2016, Cell Death and Disease.

[3]  K. Harrington,et al.  Clinical development of talimogene laherparepvec (T-VEC): a modified herpes simplex virus type-1–derived oncolytic immunotherapy , 2015, Expert review of anticancer therapy.

[4]  F. Ginhoux,et al.  Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota , 2015, Science.

[5]  Jason B. Williams,et al.  Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy , 2015, Science.

[6]  L. Zitvogel,et al.  Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1 , 2015, Science.

[7]  L. Zitvogel,et al.  The oncolytic peptide LTX-315 triggers necrotic cell death , 2015, Cell cycle.

[8]  J. Galon,et al.  Tumor Microenvironment and Immunotherapy: The Whole Picture Is Better Than a Glimpse. , 2015, Immunity.

[9]  B. Sveinbjørnsson,et al.  The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells , 2015, Oncotarget.

[10]  L. Zitvogel,et al.  A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. , 2015, Cancer Research.

[11]  L. Zitvogel,et al.  The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization , 2015, Oncotarget.

[12]  J. Spicer,et al.  528 Intratumoural treatment with LTX-, an oncolytic peptide immunotherapy, in patients with advanced metastatic disease induces CD8 effector cells and regression in some injected tumours , 2015 .

[13]  J. Wolchok,et al.  Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25 , 2015, Cell Research.

[14]  M. Delorenzi,et al.  Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy , 2014, Nature Medicine.

[15]  Ø. Rekdal,et al.  LTX-315 (Oncopore™) , 2014, Oncoimmunology.

[16]  H. Kohrt,et al.  Intratumoral Immunization: A New Paradigm for Cancer Therapy , 2014, Clinical Cancer Research.

[17]  Chandra Sekhar Ravuri,et al.  Complete regression and systemic protective immune responses obtained in B16 melanomas after treatment with LTX-315 , 2014, Cancer Immunology, Immunotherapy.

[18]  Jean M. Macklaim,et al.  Microbiota of Human Breast Tissue , 2014, Applied and Environmental Microbiology.

[19]  F. Marincola,et al.  Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment , 2013, Science.

[20]  Eric Vivier,et al.  The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide , 2013, Science.

[21]  K. Schäkel,et al.  Low-dose irradiation programs macrophage differentiation to an iNOS⁺/M1 phenotype that orchestrates effective T cell immunotherapy. , 2013, Cancer cell.

[22]  Michael R. Green,et al.  Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. , 2013, The Journal of clinical investigation.

[23]  A. Korman,et al.  Anti-CTLA-4 Antibodies of IgG2a Isotype Enhance Antitumor Activity through Reduction of Intratumoral Regulatory T Cells , 2013, Cancer Immunology Research.

[24]  A. Auerbach,et al.  Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4. , 2013, Blood.

[25]  C. Sautès-Fridman,et al.  The immune contexture in human tumours: impact on clinical outcome , 2012, Nature Reviews Cancer.

[26]  Jedd D. Wolchok,et al.  Immunologic correlates of the abscopal effect in a patient with melanoma. , 2012, The New England journal of medicine.

[27]  R. Tibshirani,et al.  In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  Kai Hilpert,et al.  Structural studies of a peptide with immune modulating and direct antimicrobial activity. , 2010, Chemistry & biology.

[29]  F. Schweizer,et al.  Cationic amphiphilic peptides with cancer-selective toxicity. , 2009, European journal of pharmacology.

[30]  B. Chauffert,et al.  CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer. , 2008, The Journal of clinical investigation.

[31]  D. Hoskin,et al.  Studies on anticancer activities of antimicrobial peptides. , 2008, Biochimica et biophysica acta.

[32]  Laurence Zitvogel,et al.  Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy , 2007, Nature Medicine.

[33]  D. Hoskin,et al.  Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria. , 2007, Experimental cell research.

[34]  Y. Shai,et al.  Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. , 2006, Biochimica et biophysica acta.

[35]  B. Sveinbjørnsson,et al.  The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo , 2006, International journal of cancer.

[36]  D. Hoskin,et al.  Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment , 2006, Expert opinion on investigational drugs.

[37]  R. Hancock,et al.  Cationic host defense (antimicrobial) peptides. , 2006, Current opinion in immunology.

[38]  Y. Shai,et al.  Host defense peptides as new weapons in cancer treatment , 2005, Cellular and Molecular Life Sciences CMLS.

[39]  David M. Conrad,et al.  Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines , 2005, Molecular Cancer Therapeutics.

[40]  J. Svendsen,et al.  Evidence for a direct antitumor mechanism of action of bovine lactoferricin. , 2002, Anticancer research.

[41]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[42]  Y. Yoo,et al.  Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species. , 1997, Biochemical and biophysical research communications.

[43]  Y. Yoo,et al.  Bovine Lactoferrin and Lactoferricin, a Peptide Derived from Bovine Lactoferrin, Inhibit Tumor Metastasis in Mice , 1997, Japanese journal of cancer research : Gann.

[44]  P. Masson,et al.  Lactoferrin in milk from different species. , 1971, Comparative biochemistry and physiology. B, Comparative biochemistry.