Electron heating in silicon dioxide and off‐stoichiometric silicon dioxide films

Electron heating in silicon dioxide (SiO2) at electric fields ≲5 MV/cm is demonstrated using three different experimental techniques: carrier separation, electroluminescence, and vacuum emission. Gradual heating of the electronic carrier distribution is demonstrated for fields from 5 to 12 MV/cm with the average excess energy of the distribution reaching ≳4 eV with respect to the bottom of the SiO2 conduction band edge. Off‐stoichiometric SiO2 (OS‐SiO2) layers are shown to behave similarly to very thin SiO2(≲70 A in thickness) with a transition occurring from ‘‘cool’’ to ‘‘hot’’ electrons as the conduction mechanism changes from direct tunneling between silicon (Si) islands in the SiO2 matrix of the OS‐SiO2 material to Fowler‐Nordheim emission into the conduction band of the SiO2 regions. The relationship of electron heating to electron trapping, positive charge generation, interface state creation, and dielectric breakdown is treated. The importance of various scattering mechanisms for stabilizing the el...

[1]  F. B. McLean,et al.  Electron-hole pair-creation energy in SiO2 , 1975 .

[2]  B. Ricco,et al.  Novel Mechanism for Tunneling and Breakdown of Thin SiO 2 Films , 1983 .

[3]  D. W. Ormond,et al.  Use of electron‐trapping region to reduce leakage currents and improve breakdown characteristics of MOS structures , 1977 .

[4]  C. W. Struck,et al.  Scattering by ionization and phonon emission in semiconductors , 1980 .

[5]  T. Ma Oxide thickness dependence of electron‐induced surface states in MOS structures , 1975 .

[6]  S. Lai,et al.  Interface trap generation in silicon dioxide when electrons are captured by trapped holes , 1983 .

[7]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[8]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[9]  D. Robbins,et al.  A study of the electrical and luminescence characteristics of a novel Si‐based thin film electroluminescent device , 1983 .

[10]  H. Fitting,et al.  Monte‐Carlo Studies of the Electron Mobility in SiO2 , 1982 .

[11]  Tso-Ping Ma,et al.  Comparison of interface-state generation by 25-keV electron beam irradiation in p-type and n-type MOS capacitors , 1975 .

[12]  E. Harari,et al.  Conduction and trapping of electrons in highly stressed ultrathin films of thermal SiO2 , 1977 .

[13]  Paul A. Solomon,et al.  Breakdown in silicon oxide−A review , 1977 .

[14]  D. Ferry Electron transport at high fields in a‐SiO2 , 1975 .

[15]  D. Dimaria,et al.  Strong electric field heating of conduction-band electrons in SiO2 , 1984 .

[16]  Z. Weinberg,et al.  Hole injection and transport in SiO2 films on Si , 1975 .

[17]  Paul M. Solomon,et al.  High‐field electron trapping in SiO2 , 1977 .

[18]  Yutaka Hayashi,et al.  Transport processes of electrons in MNOS structures , 1979 .

[19]  D. Dimaria,et al.  Conduction studies in silicon nitride: dark currents and photocurrents , 1977 .

[20]  K. Yamabe,et al.  The Effect of Hot Electron Injection on Interface Charge Density at the Silicon to Silicon Dioxide Interface , 1980 .

[21]  E. Irene,et al.  Preparation and Some Properties of Chemically Vapor‐Deposited Si‐Rich SiO2 and Si3 N 4 Films , 1978 .

[22]  J. Olivier,et al.  Energy losses of hot electrons in a thin layer of SiO2 on Si , 1972 .

[23]  J. Maserjian,et al.  Observation of positively charged state generation near the Si/SiO2 interface during Fowler–Nordheim tunneling , 1982 .

[24]  M. Shatzkes,et al.  Impact ionization and positive charge in thin SiO2 films , 1976 .

[25]  Thomas N. Theis,et al.  Electroluminescence studies in silicon dioxide films containing tiny silicon islands , 1984 .

[26]  C. Mead Operation of Tunnel‐Emission Devices , 1961 .

[27]  R. A. Gdula,et al.  The Effects of Processing on Hot Electron Trapping in SiO2 , 1976 .

[28]  C. Lam,et al.  Enhanced conduction and minimized charge trapping in electrically alterable read‐only memories using off‐stoichiometric silicon dioxide films , 1984 .

[29]  B. Ridley Mechanism of electrical breakdown in SiO2 films , 1975 .

[30]  J. Sun,et al.  Study of the atomic models of three donor‐like traps on oxidized silicon with aluminum gate from their processing dependences , 1983 .

[31]  Thomas N. Theis,et al.  Hot-electron picture of light emission from tunnel junctions , 1983 .

[32]  C. N. Berglund,et al.  Photoinjection into SiO2: Electron Scattering in the Image Force Potential Well , 1971 .

[33]  V. A. Gritsenko,et al.  Two‐band conduction of amorphous silicon nitride , 1974 .

[34]  R. C. Hughes High field electronic properties of SiO2 , 1978 .

[35]  W. Lynch Calculation of electric field breakdown in quartz as determined by dielectric dispersion analysis , 1972 .

[36]  Ingemar Lundström,et al.  Trap‐assisted charge injection in MNOS structures , 1973 .

[37]  Massimo V. Fischetti,et al.  The importance of the anode field in controlling the generation rate of the donor states at the Si–SiO2 interface , 1984 .

[38]  K. Demeyer,et al.  Electrically‐alterable read‐only‐memory using Si‐rich SiO2 injectors and a floating polycrystalline silicon storage layer , 1981 .

[39]  D. Dimaria,et al.  Charge trapping studies in SiO2 using high current injection from Si‐rich SiO2 films , 1980 .

[40]  J. M. Andrews,et al.  Electrochemical Charging of Thermal SiO2 Films by Injected Electron Currents , 1971 .

[41]  D. Dimaria,et al.  Parameter Dependence of RIE Induced Radiation Damage in Silicon Dioxide , 1981 .

[42]  M. Schlüter,et al.  Electron states in α-quartz: A self-consistent pseudopotential calculation , 1977 .

[43]  S. Lai Effects of gate metals on interface effects in metal oxide semiconductor systems after electron trapping , 1982 .

[44]  P. S. D. Lin,et al.  Leakage and Breakdown in Thin Oxide Capacitors—Correlation with Decorated Stacking Faults , 1983 .

[45]  D. Dimaria,et al.  Hole trapping in the bulk of SiO2 layers at room temperature , 1980 .

[46]  Donald R. Young,et al.  Reduction of electron trapping in silicon dioxide by high‐temperature nitrogen anneal , 1981 .

[47]  R. S. Bauer,et al.  Au and Al interface reactions with SiO2 , 1980 .

[48]  R. Handy Hot Electron Energy Loss in Tunnel Cathode Structures , 1966 .

[49]  Hisham Z. Massoud,et al.  Electron trapping in SiO2 at 295 and 77 °K , 1979 .

[50]  D. Dimaria,et al.  Capture and emission of electrons at 2.4-eV-deep trap level in SiO2films , 1975 .

[51]  D. Dimaria,et al.  Contact currents in silicon nitride , 1976 .

[52]  P. Solomon,et al.  Effect of forming gas anneal on Al–SiO2 internal photoemission characteristics , 1981 .

[53]  L. Eckertová Feldkathoden mit dünnen Isolatorschichten , 1966, November 1.

[54]  Helmut Kanter,et al.  Slow-Electron Mean Free Paths in Aluminum, Silver, and Gold , 1970 .

[55]  E. H. Nicollian,et al.  Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .

[56]  S. Lai,et al.  Effects of avalanche injection of electrons into silicon dioxide—generation of fast and slow interface states , 1981 .

[57]  R. C. Hughes Hot electron in SiO/sub 2/ , 1975 .

[58]  D. Dimaria,et al.  Light Emission from Electron-Injector Structures , 1983 .

[59]  Donald R. Young,et al.  Charge transport and trapping phenomena in off‐stoichiometric silicon dioxide films , 1983 .

[60]  D. Dimaria,et al.  Trap ionization by electron impact in amorphous SiO2 films , 1974 .

[61]  D. R. Young,et al.  Identification of electron traps in thermal silicon dioxide films , 1981 .

[62]  Alexei A. Maradudin,et al.  Theory of electron-avalanche breakdown in solids , 1980 .

[63]  Donald R. Young,et al.  Hydrogen migration under avalanche injection of electrons in Si metal‐oxide‐semiconductor capacitors , 1983 .

[64]  T. H. DiStefano,et al.  Dielectric instability and breakdown in SiO2 thin films , 1976 .

[65]  Tak H. Ning,et al.  High‐field capture of electrons by Coulomb‐attractive centers in silicon dioxide , 1976 .

[66]  Thomas H. DiStefano,et al.  Impact ionization model for dielectric instability and breakdown , 1974 .

[67]  N. Klein,et al.  Impact ionization in silicon dioxide at fields in the breakdown range , 1975 .

[68]  R. Gastaldi,et al.  Positive charge effects on the flatband voltage shift during avalanche injection on Al‐SiO2‐Si capacitors , 1982 .

[69]  Donald R. Young,et al.  Exciton or hydrogen diffusion in SiO2 , 1979 .

[70]  Max J. Schulz,et al.  Insulating Films on Semiconductors , 1981 .

[71]  W. C. Johnson,et al.  Determination of the Sign of Carrier Transported across SiO2 Films on Si , 1974 .

[73]  Donald R. Young,et al.  The effects of water on oxide and interface trapped charge generation in thermal SiO2 films , 1981 .

[74]  D. Dimaria,et al.  High current injection into SiO2 from Si rich SiO2 films and experimental applications , 1980 .

[75]  E. P. EerNisse,et al.  Viscous Shear Flow Model for MOS Device Radiation Sensitivity , 1976, IEEE Transactions on Nuclear Science.

[76]  D. Schroder,et al.  Characterization of current transport in MNOS structures with complementary tunneling emitter bipolar transistors , 1979, IEEE Transactions on Electron Devices.

[77]  P. Arnett,et al.  Hole injection into silicon nitride: Interface barrier energies by internal photoemission , 1975 .

[78]  D. Dimaria,et al.  Determination of insulator bulk trapped charge densities and centroids from photocurrent‐voltage charactersitcs of MOS structures , 1976 .

[79]  D. Ferry Electron transport and breakdown in SiO2 , 1979 .