A generalized online mirror descent with applications to classification and regression

Online learning algorithms are fast, memory-efficient, easy to implement, and applicable to many prediction problems, including classification, regression, and ranking. Several online algorithms were proposed in the past few decades, some based on additive updates, like the Perceptron, and some on multiplicative updates, like Winnow. A unifying perspective on the design and the analysis of online algorithms is provided by online mirror descent, a general prediction strategy from which most first-order algorithms can be obtained as special cases. We generalize online mirror descent to time-varying regularizers with generic updates. Unlike standard mirror descent, our more general formulation also captures second order algorithms, algorithms for composite losses and algorithms for adaptive filtering. Moreover, we recover, and sometimes improve, known regret bounds as special cases of our analysis using specific regularizers. Finally, we show the power of our approach by deriving a new second order algorithm with a regret bound invariant with respect to arbitrary rescalings of individual features.

[1]  Kumpati S. Narendra,et al.  Adaptation and learning in automatic systems , 1974 .

[2]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[3]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[4]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[5]  Manfred K. Warmuth,et al.  Exponentiated Gradient Versus Gradient Descent for Linear Predictors , 1997, Inf. Comput..

[6]  Claudio Gentile,et al.  Linear Hinge Loss and Average Margin , 1998, NIPS.

[7]  Yoav Freund,et al.  Large Margin Classification Using the Perceptron Algorithm , 1998, COLT.

[8]  Claudio Gentile,et al.  The Robustness of the p-Norm Algorithms , 1999, COLT '99.

[9]  Jürgen Forster,et al.  On Relative Loss Bounds in Generalized Linear Regression , 1999, FCT.

[10]  V. Vovk Competitive On‐line Statistics , 2001 .

[11]  Claudio Gentile,et al.  Adaptive and Self-Confident On-Line Learning Algorithms , 2000, J. Comput. Syst. Sci..

[12]  Koby Crammer,et al.  Online Passive-Aggressive Algorithms , 2003, J. Mach. Learn. Res..

[13]  Marc Teboulle,et al.  Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..

[14]  Manfred K. Warmuth,et al.  Relative Loss Bounds for Multidimensional Regression Problems , 1997, Machine Learning.

[15]  Manfred K. Warmuth,et al.  Relative Loss Bounds for On-Line Density Estimation with the Exponential Family of Distributions , 1999, Machine Learning.

[16]  Claudio Gentile,et al.  A Second-Order Perceptron Algorithm , 2002, SIAM J. Comput..

[17]  Babak Hassibi,et al.  The p-norm generalization of the LMS algorithm for adaptive filtering , 2003, IEEE Transactions on Signal Processing.

[18]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[19]  Yoram Singer,et al.  A primal-dual perspective of online learning algorithms , 2007, Machine Learning.

[20]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[21]  Peter L. Bartlett,et al.  Adaptive Online Gradient Descent , 2007, NIPS.

[22]  Shai Shalev-Shwartz,et al.  Online learning: theory, algorithms and applications (למידה מקוונת.) , 2007 .

[23]  Koby Crammer,et al.  Exact Convex Confidence-Weighted Learning , 2008, NIPS.

[24]  Elad Hazan,et al.  Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization , 2008, COLT.

[25]  Koby Crammer,et al.  Confidence-weighted linear classification , 2008, ICML '08.

[26]  Sham M. Kakade,et al.  Mind the Duality Gap: Logarithmic regret algorithms for online optimization , 2008, NIPS.

[27]  Lin Xiao,et al.  Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization , 2009, J. Mach. Learn. Res..

[28]  Yoram Singer,et al.  Efficient Online and Batch Learning Using Forward Backward Splitting , 2009, J. Mach. Learn. Res..

[29]  Omid Madani,et al.  Learning When Concepts Abound , 2009, J. Mach. Learn. Res..

[30]  Barbara Caputo,et al.  Bounded Kernel-Based Online Learning , 2009, J. Mach. Learn. Res..

[31]  Matthew J. Streeter,et al.  Adaptive Bound Optimization for Online Convex Optimization , 2010, COLT 2010.

[32]  Ambuj Tewari,et al.  Composite objective mirror descent , 2010, COLT 2010.

[33]  Francesco Orabona,et al.  OM-2: An online multi-class Multi-Kernel Learning algorithm Luo Jie , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[34]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[35]  Convex Games in Banach Spaces , 2010, COLT.

[36]  Francis R. Bach,et al.  Trace Lasso: a trace norm regularization for correlated designs , 2011, NIPS.

[37]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[38]  Elad Hazan The convex optimization approach to regret minimization , 2011 .

[39]  Ambuj Tewari,et al.  On the Universality of Online Mirror Descent , 2011, NIPS.

[40]  Ambuj Tewari,et al.  Regularization Techniques for Learning with Matrices , 2009, J. Mach. Learn. Res..

[41]  Matthew J. Streeter,et al.  No-Regret Algorithms for Unconstrained Online Convex Optimization , 2012, NIPS.

[42]  Elad Hazan,et al.  Interior-Point Methods for Full-Information and Bandit Online Learning , 2012, IEEE Transactions on Information Theory.

[43]  Shai Shalev-Shwartz,et al.  Online Learning and Online Convex Optimization , 2012, Found. Trends Mach. Learn..

[44]  Claudio Gentile,et al.  Beyond Logarithmic Bounds in Online Learning , 2012, AISTATS.

[45]  Koby Crammer,et al.  Confidence-Weighted Linear Classification for Text Categorization , 2012, J. Mach. Learn. Res..

[46]  John Langford,et al.  Normalized Online Learning , 2013, UAI.

[47]  Francesco Orabona,et al.  Dimension-Free Exponentiated Gradient , 2013, NIPS.

[48]  Koby Crammer,et al.  Adaptive regularization of weight vectors , 2009, Machine Learning.

[49]  Percy Liang,et al.  Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm , 2014, ICML.

[50]  Francesco Orabona,et al.  Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations , 2014, COLT.