Fixed parameter algorithms for restricted coloring problems

In this paper, we obtain polynomial time algorithms to determine the acyclic chromatic number, the star chromatic number, the Thue chromatic number, the harmonious chromatic number and the clique chromatic number of $P_4$-tidy graphs and $(q,q-4)$-graphs, for every fixed $q$. These classes include cographs, $P_4$-sparse and $P_4$-lite graphs. All these coloring problems are known to be NP-hard for general graphs. These algorithms are fixed parameter tractable on the parameter $q(G)$, which is the minimum $q$ such that $G$ is a $(q,q-4)$-graph. We also prove that every connected $(q,q-4)$-graph with at least $q$ vertices is 2-clique-colorable and that every acyclic coloring of a cograph is also nonrepetitive.

[1]  Katerina Asdre,et al.  The harmonious coloring problem is NP-complete for interval and permutation graphs , 2007, Discret. Appl. Math..

[2]  Vassilis Giakoumakis,et al.  On P4-tidy graphs , 1997, Discrete Mathematics & Theoretical Computer Science.

[3]  Chính T. Hoàng,et al.  On the P4-Structure of Perfect Graphs V. Overlap Graphs , 1996, J. Comb. Theory, Ser. B.

[4]  Jaroslaw Grytczuk,et al.  Nonrepetitive colorings of graphs , 2007, Electron. Notes Discret. Math..

[5]  Dániel Marx,et al.  The complexity of nonrepetitive coloring , 2009, Discret. Appl. Math..

[6]  Stephan Olariu,et al.  On the Structure of Graphs with Few P4s , 1998, Discret. Appl. Math..

[7]  Hans L. Bodlaender,et al.  Achromatic Number is NP-Complete for Cographs and Interval Graphs , 1989, Inf. Process. Lett..

[8]  Bruce A. Reed,et al.  Star coloring of graphs , 2004, J. Graph Theory.

[9]  Andrew Lyons,et al.  Acyclic and star colorings of cographs , 2011, Discret. Appl. Math..

[10]  Stephan Olariu,et al.  Efficient algorithms for graphs with few P4's , 2001, Discret. Math..

[11]  Keith Edwards A new lower bound for the harmonious chromatic number , 1998, Australas. J Comb..

[12]  Glenn G. Chappell,et al.  Coloring with no 2-Colored P4's , 2004, Electron. J. Comb..

[13]  Jaroslaw Grytczuk,et al.  Nonrepetitive Colorings of Graphs - A Survey , 2007, Int. J. Math. Math. Sci..

[14]  Oleg V. Borodin On acyclic colorings of planar graphs , 1979, Discret. Math..

[15]  Stephan Olariu,et al.  P-Components and the Homogeneous Decomposition of Graphs , 1995, SIAM J. Discret. Math..

[16]  Zsolt Tuza,et al.  On the complexity of bicoloring clique hypergraphs of graphs (extended abstract) , 2000, SODA '00.

[17]  David R. Wood,et al.  Notes on Nonrepetitive Graph Colouring , 2008, Electron. J. Comb..

[18]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[19]  Andrea Walther,et al.  Efficient Computation of Sparse Hessians Using Coloring and Automatic Differentiation , 2009, INFORMS J. Comput..

[20]  Jaroslaw Grytczuk,et al.  Thue type problems for graphs, points, and numbers , 2008, Discret. Math..

[21]  T. Coleman,et al.  The cyclic coloring problem and estimation of spare hessian matrices , 1986 .

[22]  Sylvain Gravier,et al.  Coloring the Maximal Cliques of Graphs , 2004, SIAM J. Discret. Math..

[23]  Xuding Zhu,et al.  Nonrepetitive list colourings of paths , 2011, Random Struct. Algorithms.

[24]  Vassilis Giakoumakis,et al.  On P 4 -tidy graphs , 1997 .