Wire sizing with scattering effect for nanoscale interconnection

For nanoscale interconnection, the scattering effect will soon become prominent due to scaling. It will increase the effective resistivity and thus interconnection delay significantly. Existing works on scattering effect are mostly performed using very complicated physics-based models, while the scattering impact on nanoscale VLSI interconnect and optimization have not been studied. In this paper, we first present a simple, closed-form scattering effect resistivity model based on extensive empirical studies on measurement data. Then we apply the proposed scattering model to revisit several classic wire sizing/shaping problems. Our experimental results show that if the scattering effect is ignored or characterized inaccurately beyond 65nm, the resulting interconnect optimization might be way off from the real optimal solution, e.g., up to 70% underestimation of the delay, or 20times oversizing. We also obtain the new closed-form wire sizing functions with consideration of scattering effects

[1]  K. Maex,et al.  Copper grain growth in reduced dimensions , 2004, Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729).

[2]  W. C. Elmore The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers , 1948 .

[3]  C. Kim,et al.  Study of electron-scattering mechanism in nanoscale Cu interconnects , 2003 .

[4]  John P. Fishburn,et al.  Shaping a VLSI wire to minimize Elmore delay , 1997, Proceedings European Design and Test Conference. ED & TC 97.

[5]  M. Welland,et al.  Size effects in the electrical resistivity of polycrystalline nanowires , 2000 .

[6]  W. Steinhögl,et al.  Size-dependent resistivity of metallic wires in the mesoscopic range , 2002 .

[7]  Mark Horowitz,et al.  Signal Delay in RC Tree Networks , 1983, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  Manfred Engelhardt,et al.  Electrical assessment of copper damascene interconnects down to sub-50 nm feature sizes , 2002 .

[9]  Hoffmann,et al.  Mean-free-path concept in polycrystalline metals. , 1987, Physical Review B (Condensed Matter).

[10]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[11]  Shekhar Y. Borkar,et al.  Design challenges of technology scaling , 1999, IEEE Micro.

[12]  K. Banerjee,et al.  A Comparative Scaling Analysis of Metallic and Carbon Nanotube Interconnections for Nanometer Scale VLSI Technologies , 2004 .

[13]  J. Meindl,et al.  Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) , 2005, IEEE Electron Device Letters.

[14]  K. Roy,et al.  A circuit model for carbon nanotube interconnects: comparative study with Cu interconnects for scaled technologies , 2004, ICCAD 2004.

[15]  P. Kapur,et al.  Technology and reliability constrained future copper interconnects. I. Resistance modeling , 2002 .

[16]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[17]  Martin D. F. Wong,et al.  An efficient and optimal algorithm for simultaneous buffer and wire sizing , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  K. Maex,et al.  Studies on size effect of copper interconnect lines , 2001, 2001 6th International Conference on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No.01EX443).

[19]  D. F. Wong,et al.  Shaping a VLSI wire to minimize delay using transmission line model , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[20]  D. F. Wong,et al.  Optimal wire-sizing formula under the Elmore delay model , 1996, 33rd Design Automation Conference Proceedings, 1996.

[21]  Jason Cong,et al.  Optimal wiresizing under Elmore delay model , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[22]  Jason Cong,et al.  Interconnect performance estimation models for design planning , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  R. Dannenberg,et al.  Behavior of grain boundary resistivity in metals predicted by a two-dimensional model , 2000 .

[24]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 2001 .

[25]  Jason Cong,et al.  Wire width planning for interconnect performance optimization , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[26]  John Philip Fishburn,et al.  Shaping a distributed-rc line to minimize elmore delay , 1995 .

[27]  T. Kuan,et al.  Alteration of Cu conductivity in the size effect regime , 2004 .

[28]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Leonhard Euler Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti , 2013, 1307.7187.

[30]  Maekawa,et al.  Quantum transport and surface scattering. , 1986, Physical review letters.

[31]  Charlie Chung-Ping Chen,et al.  Optimal wire-sizing function with fringing capacitance consideration , 1997, DAC.