High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries

A Na3V2(PO4)3/C cathode synthesized by a polyol-assisted pyro-synthetic reaction and subsequent sintering delivered a discharge capacity of 235 mA h g−1, corresponding to an extraction of 4 Na per formula with steady capacity retention and impressive rate capabilities that maintain 56% of theoretical capacity at 2.67 C.

[1]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[2]  G. Righini,et al.  Versatile Synthesis of Carbon-Rich LiFePO4 Enhancing Its Electrochemical Properties , 2004 .

[3]  Linda F. Nazar,et al.  Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-Ion batteries , 2000 .

[4]  K. Zaghib,et al.  Characterization of Na-based phosphate as electrode materials for electrochemical cells , 2011 .

[5]  K. Kaneko Determination of pore size and pore size distribution1. Adsorbents and catalysts , 1994 .

[6]  P. Bruce,et al.  Influence of size on the rate of mesoporous electrodes for lithium batteries. , 2010, Journal of the American Chemical Society.

[7]  John B. Goodenough,et al.  Li2NaV2(PO4)3: A 3.7 V Lithium-Insertion Cathode with the Rhombohedral NASICON Structure , 2001 .

[8]  Jeremy Barker,et al.  A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 F , 2003 .

[9]  Andreas Stein,et al.  Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites , 1999 .

[10]  Donghan Kim,et al.  Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties , 2006 .

[11]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[12]  K. Kandori,et al.  Control on size and adsorptive properties of spherical ferric phosphate particles. , 1996, Journal of colloid and interface science.

[13]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[14]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[15]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[16]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[17]  Jean-Marie Tarascon,et al.  Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials , 2009 .

[18]  M. Armand,et al.  Building better batteries , 2008, Nature.

[19]  Eiji Kobayashi,et al.  Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte , 2010 .

[20]  Nupur Nikkan Sinha,et al.  High Rate Capability of a Dual-Porosity LiFePO4/C Composite , 2010 .

[21]  Junwei Jiang,et al.  ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes , 2004 .

[22]  Shinichi Komaba,et al.  Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries , 2011 .

[23]  Jean-Marie Tarascon,et al.  Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5 , 2006 .