Solutions globales d'optimisation robuste pour la gestion dynamique de terminaux à conteneurs. (Global robust optimization solutions for dynamic management of container terminals)

Cette these s’interesse au cas d’un port maritime dans lequel des terminaux a conteneurs cooperent afin de fournir un meilleur service global. Pour coordonner les operations entre les terminaux, un modele et plusieurs methodes de resolution sont proposes. L’objectif est de minimiser les temps de rotation des navires aux longs cours, des navires caboteurs, des barges fluviales et des trains. Une solution au modele fournit une affectation des vehicules de transport de conteneurs aux terminaux, ce qui inclue les camions, ainsi qu’une allocation de ressources et des intervalles temporels pour leurs prises en charge et pour celles de leurs conteneurs. Pour obtenir des solutions au modele, une formulation du probleme comme un programme lineaire en variables mixtes est proposee, ainsi que plusieurs heuristiques basees sur la programmation mathematique. Une methode de planification en horizon glissant est introduite pour la gestion dynamique avec prise en compte des incertitudes. Des experiences numeriques sont conduites avec des milliers d’instances realistes variees, dont les resultats indiquent la viabilite de notre approche. Des resultats demontrent qu’autoriser la cooperation entre terminaux augmente significativement la performance du systeme.

[1]  Laurence A. Wolsey,et al.  Production Planning by Mixed Integer Programming , 2010 .

[2]  Daofang Chang,et al.  Integrating Berth Allocation and Quay Crane Assignments , 2010 .

[3]  Claude Lemaréchal,et al.  The omnipresence of Lagrange , 2007, Ann. Oper. Res..

[4]  Marco Laumanns,et al.  Robust cyclic berth planning of container vessels , 2010, OR Spectr..

[5]  François Vanderbeck,et al.  Implementing Mixed Integer Column Generation , 2005 .

[6]  Richard J. Linn,et al.  Storage space allocation in container terminals , 2003 .

[7]  Gerald Gamrath,et al.  Generic Branch-Cut-and-Price , 2010 .

[8]  Theo Notteboom,et al.  Port and terminal selection by deep-sea container operators , 2008 .

[9]  Stefan Voß,et al.  Container terminal operation and operations research - a classification and literature review , 2004, OR Spectr..

[10]  Kjetil Fagerholt,et al.  Ship routing and scheduling in the new millennium , 2013, Eur. J. Oper. Res..

[11]  J. Tongzon,et al.  Port privatization, efficiency and competitiveness: Some empirical evidence from container ports (terminals) , 2005 .

[12]  François Vanderbeck,et al.  Computational study of a column generation algorithm for bin packing and cutting stock problems , 1999, Math. Program..

[13]  Brian Slack,et al.  Inland barge services and container transport: the case of the ports of Le Havre and Marseille in the European context , 2009 .

[14]  Akio Imai,et al.  The Dynamic Berth Allocation Problem for a Container Port , 2001 .

[15]  Hao Hu,et al.  Tactical berth and yard template design at container transshipment terminals: A column generation based approach , 2015 .

[16]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[17]  Iris F. A. Vis,et al.  Transshipment of containers at a container terminal: An overview , 2003, Eur. J. Oper. Res..

[18]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[19]  G. Ribiere,et al.  Experiments in mixed-integer linear programming , 1971, Math. Program..

[20]  Der-Horng Lee,et al.  Terminal and yard allocation problem for a container transshipment hub with multiple terminals , 2012 .

[21]  Kerem Akartunali,et al.  A heuristic approach for big bucket multi-level production planning problems , 2009, Eur. J. Oper. Res..

[22]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[23]  Wout Dullaert,et al.  Schedule Unreliability in Liner Shipping: Origins and Consequences for the Hinterland Supply Chain , 2007 .

[24]  Paul Wentges Weighted Dantzig-Wolfe decomposition for linear mixed-integer programming , 1997 .

[25]  C. Ducruet,et al.  Time Efficiency at World Container Ports , 2014 .

[26]  Der-Horng Lee,et al.  Feeder vessel management at container transshipment terminals , 2013 .

[27]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[28]  Dominique Feillet,et al.  Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal , 2012, Eur. J. Oper. Res..

[29]  Stefan Voß,et al.  Operations research at container terminals: a literature update , 2007, OR Spectr..

[30]  Agnès Plateau,et al.  A branch-and-price-and-cut approach for sustainable crop rotation planning , 2015, Eur. J. Oper. Res..

[31]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[32]  Kenneth R. Baker,et al.  AN EXPERIMENTAL STUDY OF THE EFFECTIVENESS OF ROLLING SCHEDULES IN PRODUCTION PLANNING , 1977 .

[33]  Christian Bierwirth,et al.  A survey of berth allocation and quay crane scheduling problems in container terminals , 2010, Eur. J. Oper. Res..

[34]  Chung-Piaw Teo,et al.  Berth management in container terminal: the template design problem , 2006, OR Spectr..

[35]  Christian Bierwirth,et al.  Heuristics for the integration of crane productivity in the berth allocation problem , 2009 .

[36]  Julien Francois,et al.  Planification des chaînes logistiques : modélisation du système décisionnel et performance , 2007 .

[37]  Annabella Astorino,et al.  The Group Allocation Problem in a Transshipment Container Terminal , 2007 .

[38]  Stefan Voß,et al.  A mathematical model of inter-terminal transportation , 2014, Eur. J. Oper. Res..

[39]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[40]  Claude Lemaréchal,et al.  Comparison of bundle and classical column generation , 2008, Math. Program..

[41]  Fred W. Glover,et al.  Comparisons and enhancement strategies for linearizing mixed 0-1 quadratic programs , 2004, Discret. Optim..

[42]  L. G. Mitten Branch-and-Bound Methods: General Formulation and Properties , 1970, Oper. Res..

[43]  Jacques Desrosiers,et al.  Row-reduced column generation for degenerate master problems , 2014, Eur. J. Oper. Res..

[44]  Christian Bierwirth,et al.  A follow-up survey of berth allocation and quay crane scheduling problems in container terminals , 2015, Eur. J. Oper. Res..

[45]  Theo Notteboom,et al.  Concentration and the formation of multi-port gateway regions in the European container port system: an update , 2010 .

[46]  A. Bartošek,et al.  Quay Cranes in Container Terminals , 2013 .

[47]  Ruslan Sadykov,et al.  Column Generation based Primal Heuristics , 2010, Electron. Notes Discret. Math..

[48]  Kees Jan Roodbergen,et al.  Storage yard operations in container terminals: Literature overview, trends, and research directions , 2014, Eur. J. Oper. Res..

[49]  Martin W. P. Savelsbergh,et al.  Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..

[50]  Matteo Salani,et al.  Modeling and Solving the Tactical Berth Allocation Problem , 2010 .

[51]  Akio Imai,et al.  Berthing ships at a multi-user container terminal with a limited quay capacity , 2008 .

[52]  Kees Jan Roodbergen,et al.  Transport operations in container terminals: Literature overview, trends, research directions and classification scheme , 2014, Eur. J. Oper. Res..

[53]  Manfred W. Padberg,et al.  Improving LP-Representations of Zero-One Linear Programs for Branch-and-Cut , 1991, INFORMS J. Comput..

[54]  E. Lefeber,et al.  Strategic allocation of cyclically calling vessels for multi-terminal container operators , 2012 .

[55]  Thorsten Koch,et al.  Branching rules revisited , 2005, Oper. Res. Lett..

[56]  Reinaldo Morabito,et al.  Relax and fix heuristics to solve one-stage one-machine lot-scheduling models for small-scale soft drink plants , 2010, Comput. Oper. Res..

[57]  Sönke Hartmann,et al.  Generating scenarios for simulation and optimization of container terminal logistics , 2004, OR Spectr..

[58]  Alexander Martin Integer Programs with Block Structure , 1999 .

[59]  Xiongwen Quan,et al.  Robust berth scheduling with uncertain vessel delay and handling time , 2012, Ann. Oper. Res..

[60]  Gérard Cornuéjols,et al.  Valid inequalities for mixed integer linear programs , 2007, Math. Program..

[61]  Anass Nagih,et al.  Hybrid column generation for large-size Covering Integer Programs: Application to transportation planning , 2013, Comput. Oper. Res..

[62]  Wu Zhang,et al.  On practical resource allocation for production planning and scheduling with period overlapping setups , 1994 .

[63]  François Vanderbeck,et al.  Branching in branch-and-price: a generic scheme , 2011, Math. Program..

[64]  Laureano F. Escudero,et al.  On a Fix-and-Relax Framework for a Class of Project Scheduling Problems , 2005, Ann. Oper. Res..

[65]  Nils Boysen,et al.  A Survey on Container Processing in Railway Yards , 2011, Transp. Sci..

[66]  Arthur M. Geoffrion,et al.  Lagrangian Relaxation for Integer Programming , 2010, 50 Years of Integer Programming.

[67]  Laurence A. Wolsey,et al.  bc -- prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems , 2000 .

[68]  B. Slack,et al.  The Geography of Transport Systems , 2006 .

[69]  Jesper Larsen,et al.  Models for the discrete berth allocation problem: A computational comparison , 2011 .

[70]  Akio Imai,et al.  The simultaneous berth and quay crane allocation problem , 2008 .

[71]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[72]  Gilbert Laporte,et al.  Models and Tabu Search Heuristics for the Berth-Allocation Problem , 2005, Transp. Sci..

[73]  Manfred W. Padberg,et al.  Perfect zero–one matrices , 1974, Math. Program..

[74]  Michel Bierlaire,et al.  An Exact Algorithm for the Integrated Planning of Berth Allocation and Quay Crane Assignment , 2013, Transp. Sci..

[75]  Jan Tijmen Udding,et al.  Simultaneous berth allocation and yard planning at tactical level , 2013, OR Spectr..