Septal networks: relevance to theta rhythm, epilepsy and Alzheimer's disease

Information processing and storing by brain networks requires a highly coordinated operation of multiple neuronal groups. The function of septal neurons is to modulate the activity of archicortical (e.g. hippocampal) and neocortical circuits. This modulation is necessary for the development and normal occurrence of rhythmical cortical activities that control the processing of sensory information and memory functions. Damage or degeneration of septal neurons results in abnormal information processing in cortical circuits and consequent brain dysfunction. Septal neurons not only provide the optimal levels of excitatory background to cortical structures, but they may also inhibit the occurrence of abnormal excitability states.

[1]  H. Stephan,et al.  The septum in the human brain , 1968, The Journal of comparative neurology.

[2]  O. Macadar,et al.  Septal unit activity and hippocampal EEG during the sleep-wakefulness cycle of the rat. , 1971, Physiology & behavior.

[3]  C. H. Vanderwolf,et al.  Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital , 1975, Experimental Neurology.

[4]  P. Davies,et al.  SELECTIVE LOSS OF CENTRAL CHOLINERGIC NEURONS IN ALZHEIMER'S DISEASE , 1976, The Lancet.

[5]  G. Lynch,et al.  Anatomical and functional aspects of the septo-hippocampal projections. , 1977, Ciba Foundation symposium.

[6]  W. Cowan,et al.  An autoradiographic study of the organization of the efferet connections of the hippocampal formation in the rat , 1977, The Journal of comparative neurology.

[7]  J. Winson Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. , 1978, Science.

[8]  P. Andersen,et al.  Septo-hippocampal pathway necessary for dentate theta production , 1979, Brain Research.

[9]  W. Cowan,et al.  The connections of the septal region in the rat , 1979, The Journal of comparative neurology.

[10]  H. Kimura,et al.  Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. , 1980, Science.

[11]  J. Coyle,et al.  Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis , 1981, Annals of neurology.

[12]  J. Coyle,et al.  Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. , 1982, Science.

[13]  A. Alonso,et al.  Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain , 1982, Neuroscience Letters.

[14]  D L Price,et al.  Alzheimer's disease: a disorder of cortical cholinergic innervation. , 1983, Science.

[15]  M. Mesulam,et al.  Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6) , 1983, Neuroscience.

[16]  A. Levey,et al.  Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey , 1983, The Journal of comparative neurology.

[17]  H. Henke,et al.  Cholinergic enzymes in neocortex, hippocampus and basal forebrain of non-neurological and senile dementia of alzheimer-type patients , 1983, Brain Research.

[18]  F. Fonnum,et al.  Cholinergic and GABAergic forebrain projections to the habenula and nucleus interpeduncularis: Surgical and kainic acid lesions , 1983, Brain Research.

[19]  J. Wu,et al.  An immunohistochemical study on the location of GABAergic neurons in rat septum , 1984, The Journal of comparative neurology.

[20]  C. Gall,et al.  Distribution of enkephalin, substance P, tyrosine hydroxylase, and 5‐hydroxytryptamine immunoreactivity in the septal region of the rat , 1984, The Journal of comparative neurology.

[21]  D. Price,et al.  Topography of the Magnocellular Basal Forebrain System in Human Brain , 1984, Journal of neuropathology and experimental neurology.

[22]  R. S. Sloviter,et al.  “Epileptic” brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine , 1985, Brain Research Bulletin.

[23]  E. Cavalheiro,et al.  Seizures produced by pilocarpine: Neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrain , 1986, Brain Research.

[24]  F. Gage,et al.  Retrograde cell changes in medial septum and diagonal band following fimbria-fornix transection: Quantitative temporal analysis , 1986, Neuroscience.

[25]  L. Heimer,et al.  Distribution of gabaergic and cholinergic neurons in the rat diagonal band , 1986, Neuroscience.

[26]  A. Alonso,et al.  Cross-correlation analysis of septohippocampal neurons during ≡-rhythm , 1987, Brain Research.

[27]  B. H. Bland,et al.  State-dependent spike train dynamics of hippocampal formation neurons: evidence for theta-on and theta-off cells , 1987, Brain Research.

[28]  M. Geffard,et al.  An ultrastructural study of GABA-immunoreactive neurons and terminals in the septum of the rat , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  W. Griffith,et al.  Membrane properties of cell types within guinea pig basal forebrain nuclei in vitro. , 1988, Journal of neurophysiology.

[30]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[31]  M. Frotscher,et al.  Organization of the septal region in the rat brain: Cholinergic‐GABAergic interconnections and the termination of hippocampo‐septal fibers , 1989, The Journal of comparative neurology.

[32]  Henry Markram,et al.  Electrophysiological characteristics of cholinergic and non-cholinergic neurons in the rat medial septum-diagonal band complex , 1990, Brain Research.

[33]  L. Hersh,et al.  Choline acetyltransferase immunopositive neurons in the lateral septum , 1990, Brain Research.

[34]  A. Patel,et al.  Topographical localization of neurons containing parvalbumin and choline acetyltransferase in the medial septum-diagonal band region of the rat , 1990, Neuroscience.

[35]  J. Price,et al.  Sources of presumptive glutamatergic/aspartatergic afferents to the magnocellular basal forebrain in the rat , 1990, The Journal of comparative neurology.

[36]  M. Stewart,et al.  Hippocampal theta activity in monkeys , 1991, Brain Research.

[37]  D. Olton,et al.  Basal forebrain cholinergic system: a functional analysis. , 1991, Advances in experimental medicine and biology.

[38]  L. Záborszky,et al.  Afferents to basal forebrain cholinergic projection neurons: an update. , 1991, Advances in experimental medicine and biology.

[39]  B. H. Bland,et al.  Medial septal cell interactions in relation to hippocampal field activity and the effects of atropine , 1991, Hippocampus.

[40]  R. Vertes PHA‐L analysis of projections from the supramammillary nucleus in the rat , 1992, The Journal of comparative neurology.

[41]  B. H. Bland,et al.  The extrinsic modulation of hippocampal theta depends on the coactivation of cholinergic and GABA-ergic medial septal inputs , 1992, Neuroscience & Biobehavioral Reviews.

[42]  S. Oddie,et al.  In vivo intracellular correlates of hippocampal formation theta-on and theta-off cells , 1992, Brain Research.

[43]  G. Buzsáki,et al.  Intraseptal connections redefined: lack of a lateral septum to medial septum path , 1992, Brain Research.

[44]  M. Scheuer,et al.  Seizures and epilepsy in the elderly. , 1993, Neurologic clinics.

[45]  J. Lisman,et al.  Heightened synaptic plasticity of hippocampal CA1 neurons during a Cholinergically induced rhythmic state , 1993, Nature.

[46]  S. Deadwyler,et al.  3—D reconstruction of the cholinergic basal forebrain system in young and aged rats , 1993, Neurobiology of Aging.

[47]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[48]  B. H. Bland,et al.  Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex , 1993, Progress in Neurobiology.

[49]  R. Vertes,et al.  Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  John W. Miller,et al.  Anticonvulsant effects of the experimental induction of hippocampal theta activity , 1994, Epilepsy Research.

[51]  R. Vertes,et al.  Extrinsic modulation of medial septal cell discharges by the ascending brainstem hippocampal synchronizing pathway , 1994, Hippocampus.

[52]  R. Vertes,et al.  The midline posterior hypothalamic region comprises a critical part of the ascending brainstem hippocampal synchronizing pathway , 1994, Hippocampus.

[53]  G. Buzsáki,et al.  Hippocampal theta activity following selective lesion of the septal cholinergic systeM , 1994, Neuroscience.

[54]  R. Vertes,et al.  Ascending projections of the posterior nucleus of the hypothalamus: PHA‐L analysis in the rat , 1995, The Journal of comparative neurology.

[55]  B H Bland,et al.  Discharge patterns of hippocampal theta-related cells in the caudal diencephalon of the urethan-anesthetized rat. , 1995, Journal of neurophysiology.

[56]  O. Vinogradova Expression, control, and probable functional significance of the neuronal theta-rhythm , 1995, Progress in Neurobiology.

[57]  F. D. Bilbao,et al.  Age-related changes in parvalbumin- and GABA-immunoreactive cells in the rat septum , 1995, Neurobiology of Aging.

[58]  T. Harkany,et al.  β-Amyloid(1–42) affects cholinergic but not parvalbumin-containing neurons in the septal complex of the rat , 1995, Brain Research.

[59]  N. Gorelova,et al.  Role of the afterhyperpolarization in control of discharge properties of septal cholinergic neurons in vitro. , 1996, Journal of neurophysiology.

[60]  C. Léránth,et al.  A Population of Supramammillary Area Calretinin Neurons Terminating on Medial Septal Area Cholinergic and Lateral Septal Area Calbindin-Containing Cells Are Aspartate/Glutamatergic , 1996, The Journal of Neuroscience.

[61]  M. Sofroniew,et al.  Increased vulnerability of septal cholinergic neurons to partial loss of target neurons in aged rats , 1996, Neuroscience.

[62]  S. Fox,et al.  Intracellular recordings from medial septal neurons during hippocampal theta rhythm , 1997, Experimental Brain Research.

[63]  L. Swanson,et al.  Connections of the rat lateral septal complex 1 Published on the World Wide Web on 2 June 1997. 1 , 1997, Brain Research Reviews.

[64]  J Somogyi,et al.  Distribution of calretinin-containing neurons relative to other neurochemically-identified cell types in the medial septum of the rat , 1997, Neuroscience.

[65]  R. Thomas,et al.  Seizures and epilepsy in the elderly. , 1997, Archives of internal medicine.

[66]  R. Vertes,et al.  Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. , 1997, Neuroscience.

[67]  Z. Borhegyi,et al.  The supramammillary nucleus innervates cholinergic and GABAergic neurons in the medial septum-diagonal band of Broca complex , 1997, Neuroscience.

[68]  Martin Sarter,et al.  Cortical Acetylcholine, Reality Distortion, Schizophrenia, and Lewy Body Dementia: Too Much or Too Little Cortical Acetylcholine? , 1998, Brain and Cognition.

[69]  Y. Lamour,et al.  Loss of rhythmically bursting neurons in rat medial septum following selective lesion of septohippocampal cholinergic system. , 1998, Journal of neurophysiology.

[70]  G. Wilcock,et al.  The cholinergic hypothesis of Alzheimer’s disease: a review of progress , 1999, Journal of neurology, neurosurgery, and psychiatry.

[71]  Y. Abe,et al.  Age-related changes in rat hippocampal theta rhythms: a difference between type 1 and type 2 theta. , 1999, The Journal of veterinary medical science.

[72]  F. Gage,et al.  Central neuronal loss and behavioral impairment in mice lacking neurotrophin receptor p75 , 1999 .

[73]  B. H. Bland,et al.  Mechanisms of Neural Synchrony in the Septohippocampal Pathways Underlying Hippocampal Theta Generation , 1999, The Journal of Neuroscience.

[74]  M. Sarter,et al.  Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents , 1999, Neuroscience.

[75]  P. Davies Challenging the cholinergic hypothesis in Alzheimer disease. , 1999, JAMA.

[76]  G Buzsáki,et al.  Interactions between Hippocampus and Medial Septum during Sharp Waves and Theta Oscillation in the Behaving Rat , 1999, The Journal of Neuroscience.

[77]  Z. Henderson,et al.  Conduction velocities and membrane properties of different classes of rat septohippocampal neurons recorded in vitro , 1999, The Journal of physiology.

[78]  F. Gage,et al.  Central neuronal loss and behavioral impairment in mice lacking neurotrophin receptor p75. , 1999, The Journal of comparative neurology.

[79]  Potassium (K+) channel expression in basal forebrain cholinergic neurons , 2000, Journal of neuroscience research.

[80]  A. Duque,et al.  Local synaptic connections of basal forebrain neurons , 2000, Behavioural Brain Research.

[81]  E. Apartis,et al.  Age-related changes in rhythmically bursting activity in the medial septum of rats , 2000, Brain Research.

[82]  R. Vertes,et al.  Collateral projections from the supramammillary nucleus to the medial septum and hippocampus , 2000, Synapse.

[83]  Barbara E. Jones,et al.  Discharge Properties of Juxtacellularly Labeled and Immunohistochemically Identified Cholinergic Basal Forebrain Neurons Recorded in Association with the Electroencephalogram in Anesthetized Rats , 2000, The Journal of Neuroscience.

[84]  A. Alonso,et al.  Discharge Profiles of Juxtacellularly Labeled and Immunohistochemically Identified GABAergic Basal Forebrain Neurons Recorded in Association with the Electroencephalogram in Anesthetized Rats , 2000, The Journal of Neuroscience.

[85]  C. Léránth,et al.  Muscarinic Tone Sustains Impulse Flow in the Septohippocampal GABA But Not Cholinergic Pathway: Implications for Learning and Memory , 2000, The Journal of Neuroscience.

[86]  O. Lindvall,et al.  Basal forebrain neurons suppress amygdala kindling via cortical but not hippocampal cholinergic projections in rats , 2000, The European journal of neuroscience.

[87]  H. Bokor,et al.  The supramammillo-hippocampal and supramammillo-septal glutamatergic/aspartatergic projections in the rat: a combined [3H]d-aspartate autoradiographic and immunohistochemical study , 2000, Neuroscience.

[88]  O. Lindvall,et al.  Septal cholinergic neurons suppress seizure development in hippocampal kindling in rats: comparison with noradrenergic neurons , 2001, Neuroscience.

[89]  B. Jones,et al.  Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex , 2001, Neuroscience.

[90]  M. Kahana,et al.  Theta returns , 2001, Current Opinion in Neurobiology.

[91]  B. H. Bland,et al.  Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration , 2001, Behavioural Brain Research.

[92]  S. Kawashima,et al.  Effects of amyloid-beta-(25-35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. , 2001, European journal of pharmacology.

[93]  M. Sarter,et al.  The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections , 2002, The European journal of neuroscience.

[94]  Gregory L. Holmes,et al.  Seizure-induced neuronal injury: Animal data , 2002, Neurology.

[95]  L. Záborszky The modular organization of brain systems. Basal forebrain: the last frontier. , 2002, Progress in brain research.

[96]  J. E CENTRAL CHOLINERGIC PATHWAYS IN THE RAT : AN OVERVIEW BASED ON AN ALTERNATIVE NOMENCLATURE ( Chl-Ch 6 ) , 2002 .

[97]  Jan Konopacki,et al.  Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta-related cells. , 2002, Journal of neurophysiology.

[98]  B. Meldrum,et al.  Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. , 2002, Progress in brain research.

[99]  Ehren L. Newman,et al.  Human θ Oscillations Related to Sensorimotor Integration and Spatial Learning , 2003, The Journal of Neuroscience.

[100]  M. Danik,et al.  Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity , 2003, The Journal of physiology.

[101]  I. Katona,et al.  Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum , 2003, The European journal of neuroscience.

[102]  I. Gritti,et al.  Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat , 2003, The Journal of comparative neurology.

[103]  M. Rogawski,et al.  The neuropharmacological basis for the use of memantine in the treatment of Alzheimer's disease. , 2006, CNS drug reviews.

[104]  M. Alreja,et al.  Acetylcholinesterase Inhibitors Activate Septohippocampal GABAergic Neurons via Muscarinic but Not Nicotinic Receptors , 2003, Journal of Pharmacology and Experimental Therapeutics.

[105]  Andreas Schulze-Bonhage,et al.  Human theta oscillations related to sensorimotor integration and spatial learning. , 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[106]  M. Mendez,et al.  Seizures in Elderly Patients with Dementia , 2003, Drugs & aging.

[107]  Z. Borhegyi,et al.  Phase Segregation of Medial Septal GABAergic Neurons during Hippocampal Theta Activity , 2004, The Journal of Neuroscience.

[108]  C. Léránth,et al.  Intrinsic vesicular glutamate transporter 2‐immunoreactive input to septohippocampal parvalbumin‐containing neurons: Novel glutamatergic local circuit cells , 2004, Hippocampus.

[109]  D. Westaway,et al.  Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer's disease. , 2004, Journal of psychiatry & neuroscience : JPN.

[110]  V. Chan‐Palay,et al.  Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain , 2004, Anatomy and Embryology.

[111]  L. Colom,et al.  Characterization of medial septal glutamatergic neurons and their projection to the hippocampus , 2005, Synapse.

[112]  K. Pang,et al.  Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm , 2005, Hippocampus.

[113]  M. Danik,et al.  A functional glutamatergic neurone network in the medial septum and diagonal band area , 2005, The Journal of physiology.

[114]  J. Rawlins,et al.  Septo-hippocampal connections and the hippocampal theta rhythm , 1979, Experimental Brain Research.

[115]  L. Colom,et al.  Glutamic acid decarboxylase isoforms are differentially distributed in the septal region of the rat , 2005, Neuroscience Research.

[116]  Pablo Fuentealba,et al.  Synaptic plasticity in local cortical network in vivo and its modulation by the level of neuronal activity. , 2006, Cerebral cortex.