On numerical realizability of thermal convection

Astounded at the regularity of convective structures observed in simulations of mesoscale flow past realistic topography, we investigate the computational aspects of a classical problem of flow over a heated plane. We find that the numerical solutions are sensitive to viscosity, either incorporated a priori or effectively realized in computational models. In particular, anisotropic viscosity can lead to regular convective structures that mimic naturally realizable Rayleigh-Benard cells, which are unphysical for the specified external parameter range. Details of the viscosity appear to play a secondary role; that is, similar structures can occur for prescribed constant viscosities, explicit subgrid-scale turbulence models, ad-hoc numerical filters, or implicit dissipation of numerical schemes. This implies the need for a careful selection of numerical tools suitable for convection-resolving simulations of atmospheric circulations. The implicit large-eddy-simulation (ILES) approach using non-oscillatory schemes is especially attractive, as for under-resolved calculations it reproduces well the coarsened results of finely-resolved boundary layer convection.

[1]  R. Atlas,et al.  The 0.125 degree finite‐volume general circulation model on the NASA Columbia supercomputer: Preliminary simulations of mesoscale vortices , 2006 .

[2]  P. Smolarkiewicz,et al.  Effective eddy viscosities in implicit large eddy simulations of turbulent flows , 2003 .

[3]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[4]  L. Biferale,et al.  Dynamics and statistics of heavy particles in turbulent flows , 2006, nlin/0601027.

[5]  L. Margolin,et al.  Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics , 2011 .

[6]  T. Clark,et al.  Severe Downslope Windstorm Calculations in Two and Three Spatial Dimensions Using Anelastic Interactive Grid Nesting: A Possible Mechanism for Gustiness , 1984 .

[7]  Durga Ray Cellular convection with nonisotropic eddys , 1965 .

[8]  Matthew C. Wheeler,et al.  Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain , 1999 .

[9]  P. Smolarkiewicz,et al.  Solitary wave effects north of Strait of Messina , 2007 .

[10]  W. Skamarock Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra , 2004 .

[11]  Dale R. Durran,et al.  Atmospheric factors governing banded orographic convection , 2005 .

[12]  L. Margolin,et al.  A Class of Nonhydrostatic Global Models. , 2001 .

[13]  Joanna Szmelter,et al.  Iterated upwind schemes for gas dynamics , 2009, J. Comput. Phys..

[14]  Edward A. Spiegel,et al.  Rayleigh‐Bénard Convection: Structures and Dynamics , 1998 .

[15]  Richard G. Forbes,et al.  Daytime convective development over land: A model intercomparison based on LBA observations , 2006 .

[16]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[17]  Richard Liska,et al.  Two-dimensional shallow water equations by composite schemes , 1999 .

[18]  C. Bretherton,et al.  Effects of Domain Size and Numerical Resolution on the Simulation of Shallow Cumulus Convection , 2002 .

[19]  P. Smolarkiewicz,et al.  Monotone Finite-Difference Approximations to the Advection-Condensation Problem , 1990 .

[20]  Bernardus J. Geurts,et al.  Turbulent flow computation , 2004 .

[21]  Gareth P. Williams Friction Term Formulation and Convective Instability in a Shallow Atmosphere , 1972 .

[22]  L. Margolin,et al.  MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .

[23]  Lord Rayleigh,et al.  LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side , 1916 .

[24]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[25]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[26]  J. Prusa,et al.  An all-scale anelastic model for geophysical flows: dynamic grid deformation , 2003 .

[27]  J. Done,et al.  The next generation of NWP: explicit forecasts of convection using the weather research and forecasting (WRF) model , 2004 .

[28]  Robert E. McIntosh,et al.  Local Structure of the Convective Boundary Layer from a Volume-Imaging Radar. , 2000 .

[29]  J. Prusa,et al.  Towards mesh adaptivity for geophysical turbulence: continuous mapping approach , 2005 .

[30]  Burghard Brümmer,et al.  Roll and cell convection in wintertime Arctic cold-air outbreaks. , 1999 .

[31]  Joseph Tribbia,et al.  A Numerical Study of Physical Processes Affecting Convective Cellular Geometry , 1980 .

[32]  Wojciech W. Grabowski,et al.  MJO-like Coherent Structures: Sensitivity Simulations Using the Cloud-Resolving Convection Parameterization (CRCP) , 2003 .

[33]  Piotr K. Smolarkiewicz,et al.  Building resolving large-eddy simulations and comparison with wind tunnel experiments , 2007, J. Comput. Phys..

[34]  Piotr K. Smolarkiewicz,et al.  Multidimensional positive definite advection transport algorithm: an overview , 2006 .

[35]  S. Fritz,et al.  Cellular Cloud Patterns revealed by Tiros I , 1961 .

[36]  Paul Manneville,et al.  Hydrodynamics and Nonlinear Instabilities , 1998 .

[37]  Pierre Bénard,et al.  Semi‐Lagrangian advection scheme with controlled damping: An alternative to nonlinear horizontal diffusion in a numerical weather prediction model , 2008 .

[38]  Kwing L. Chan,et al.  A large-eddy simulation of turbulent compressible convection: differential rotation in the solar convection zone , 2001 .

[39]  Len G. Margolin,et al.  Implicit Turbulence Modeling for High Reynolds Number Flows , 2001 .

[40]  Nils Wedi,et al.  Direct Numerical Simulation of the Plumb–McEwan Laboratory Analog of the QBO , 2006 .

[41]  Ulrich Schumann,et al.  Subgrid length-scales for large-eddy simulation of stratified turbulence , 1991 .

[42]  Len G. Margolin,et al.  On ‘spurious’ eddies , 2001 .

[43]  Richard H. Miller,et al.  A horror story about integration methods , 1991 .

[44]  C. H. B. Priestley The width-height ratio of large convection cells , 1962 .

[45]  Len G. Margolin,et al.  Dissipation in Implicit Turbulence Models: A Computational Study , 2006 .

[46]  N. Wedi,et al.  Extending Gal-Chen and Somerville terrain-following coordinate transformation on time-dependent curvilinear boundaries , 2004 .

[47]  L. Margolin,et al.  Large-eddy simulations of convective boundary layers using nonoscillatory differencing , 1999 .

[48]  Piotr K. Smolarkiewicz,et al.  Numerical Simulation of the Evolution of a Three-Dimensional Field of Cumulus Clouds. Part I: Model Description, Comparison with Observations and Sensitivity Studies. , 1985 .

[49]  B. Campistron,et al.  TRAC98: Detection of Coherent Structures in a Convective Boundary Layer using Airborne Measurements , 2004 .

[50]  Thomas Hauf,et al.  Convectively forced internal gravity waves: Results from two-dimensional numerical experiments , 1986 .

[51]  C. Schär,et al.  Embedded Cellular Convection in Moist Flow past Topography , 2005 .

[52]  Bogumił Jakubiak,et al.  High resolution modelling of atmospheric flow over southern Poland , 2004 .

[53]  William J. Rider,et al.  Modeling turbulent flow with implicit LES , 2006 .

[54]  Eberhard Bodenschatz,et al.  Recent Developments in Rayleigh-Bénard Convection , 2000 .

[55]  William C. Skamarock,et al.  A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..

[56]  Richard Liska Burton Wendroff Composite Schemes For Conservation Laws , 1998 .

[57]  Piotr K. Smolarkiewicz,et al.  A viscoelastic fluid model for brain injuries , 2002 .

[58]  Ulrich Schumann,et al.  Coherent structure of the convective boundary layer derived from large-eddy simulations , 1989, Journal of Fluid Mechanics.

[59]  P. Mininni,et al.  Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation , 2007 .

[60]  B. W. Atkinson,et al.  Mesoscale shallow convection in the atmosphere , 1996 .

[61]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[62]  Harold Jeffreys,et al.  Some Cases of Instability in Fluid Motion , 1928 .

[63]  G. Young,et al.  ROLLS, STREETS, WAVES, AND MORE: A Review of Quasi-Two-Dimensional Structures in the Atmospheric Boundary Layer , 2002 .

[64]  K. Emanuel,et al.  The Representation of Cumulus Convection in Numerical Models , 1993 .

[65]  S. Fauve,et al.  Hydrodynamics and Nonlinear Instabilities: Pattern forming instabilities , 1998 .

[66]  J. Wyngaard,et al.  Resolution Requirements for the Simulation of Deep Moist Convection , 2003 .

[67]  Kwing L. Chan,et al.  Non-Boussinesq simulations of Rayleigh-Benard convection in a perfect gas , 2004 .

[68]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[69]  Piotr K. Smolarkiewicz,et al.  FORWARD-IN-TIME DIFFERENCING FOR FLUIDS: SIMULATION OF GEOPHYSICAL TURBULENCE , 2002 .

[70]  Durga Ray,et al.  Variable eddy diffusivities and atmospheric cellular convection , 1986 .

[71]  C. H. B. Priestley The width-height ratio of large convection cells , 1962 .

[72]  William J. Rider,et al.  The relationship of MPDATA to other high‐resolution methods , 2006 .

[73]  James C. McWilliams,et al.  Anisotropic horizontal viscosity for ocean models , 2003 .

[74]  P. Duynkerke,et al.  Large Eddy Simulation of Trade Wind Cumulus Clouds. , 1993 .

[75]  Nikolaus A. Adams,et al.  An adaptive local deconvolution method for implicit LES , 2005, J. Comput. Phys..

[76]  Piotr K. Smolarkiewicz,et al.  Instability and breakdown of a vertical vortex pair in a strongly stratified fluid , 2008, Journal of Fluid Mechanics.