Spanning universality in random graphs

A graph is said to be $\mathcal{H}(n, \Delta)$-universal if it contains every graph on $n$ vertices with maximum degree at most $\Delta$. Using a `matching-based' embedding technique introduced by Alon and Furedi, Dellamonica, Kohayakawa, Rodl and Rucinski showed that the random graph $G_{n,p}$ is asymptotically almost surely $\mathcal{H}(n, \Delta)$-universal for $p = \tilde \Omega(n^{-1/\Delta})$ - a threshold for the property that every subset of $\Delta$ vertices has a common neighbour. This bound has become a benchmark in the field and many subsequent results on embedding spanning structures of maximum degree $\Delta$ in random graphs are proven only up to this threshold. We take a step towards overcoming limitations of former techniques by showing that $G_{n,p}$ is almost surely $\mathcal{H}(n, \Delta)$-universal for $p = \tilde \Omega(n^{- 1/(\Delta-1/2)})$.

[1]  Rajko Nenadov,et al.  Powers of Hamilton cycles in random graphs and tight Hamilton cycles in random hypergraphs , 2016, Random Struct. Algorithms.

[2]  Matthew Kwan Almost all Steiner triple systems have perfect matchings , 2016, Proceedings of the London Mathematical Society.

[3]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[4]  Wojciech Samotij,et al.  Expanders Are Universal for the Class of All Spanning Trees , 2011, Combinatorics, Probability and Computing.

[5]  Yoshiharu Kohayakawa,et al.  Universality and tolerance , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[6]  Michael Krivelevich,et al.  Sharp threshold for the appearance of certain spanning trees in random graphs , 2012, Random Struct. Algorithms.

[7]  Sangjune Lee,et al.  Universality of Random Graphs for Graphs of Maximum Degree Two , 2013, SIAM J. Discret. Math..

[8]  Noga Alon,et al.  Spanning subgraphs of random graphs , 1992, Graphs Comb..

[9]  Julia Bottcher Large-scale structures in random graphs , 2017, 1702.02648.

[10]  David Conlon,et al.  Almost-spanning universality in random graphs , 2017, Random Struct. Algorithms.

[11]  Richard Montgomery,et al.  Spanning trees in random graphs , 2018, Advances in Mathematics.

[12]  Ueli Peter,et al.  Universality of random graphs and rainbow embedding , 2013, Random Struct. Algorithms.

[13]  R. Nenadov,et al.  Powers of cycles in random graphs and hypergraphs , 2017 .

[14]  Béla Bollobás,et al.  Threshold functions , 1987, Comb..

[15]  Vojtech Rödl,et al.  On Size Ramsey Numbers of Graphs with Bounded Degree , 2000, Comb..

[16]  Wojciech Samotij,et al.  Large Bounded Degree Trees in Expanding Graphs , 2010, Electron. J. Comb..

[17]  B. Bollobás The evolution of random graphs , 1984 .

[18]  Yoshiharu Kohayakawa,et al.  Almost Spanning Subgraphs of Random Graphs After Adversarial Edge Removal , 2009, Combinatorics, Probability and Computing.

[19]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[20]  Kyle Luh,et al.  Optimal threshold for a random graph to be 2-universal , 2016, Transactions of the American Mathematical Society.

[21]  R. Montgomery Embedding bounded degree spanning trees in random graphs , 2014, 1405.6559.

[22]  Noga Alon,et al.  Embedding nearly-spanning bounded degree trees , 2007, Comb..

[23]  Domingos Dellamonica,et al.  An Improved Upper Bound on the Density of Universal Random Graphs , 2012, LATIN.

[24]  Andrzej Dudek,et al.  Square of a Hamilton cycle in a random graph , 2016, 1611.06570.

[25]  Kyle Luh,et al.  Embedding large graphs into a random graph , 2016, 1606.05923.

[26]  Daniela Kühn,et al.  On Pósa's Conjecture for Random Graphs , 2012, SIAM J. Discret. Math..

[27]  Vojtech Rödl,et al.  A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[28]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[29]  Yoshiharu Kohayakawa,et al.  Sparse partition universal graphs for graphs of bounded degree , 2011 .

[30]  Peter Allen,et al.  Local resilience of spanning subgraphs in sparse random graphs , 2015, Electron. Notes Discret. Math..

[31]  Béla Bollobás,et al.  Random Graphs , 1985 .

[32]  Michael Krivelevich,et al.  Triangle Factors in Random Graphs , 1997, Combinatorics, Probability and Computing.

[33]  Jeong Han Kim,et al.  Perfect matchings in random uniform hypergraphs , 2003, Random Struct. Algorithms.

[34]  J. Kahn,et al.  Factors in random graphs , 2008 .

[35]  Michael Krivelevich Embedding Spanning Trees in Random Graphs , 2010, SIAM J. Discret. Math..

[36]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[37]  Y. Kohayakawa,et al.  Blow-up lemmas for sparse graphs , 2016, 1612.00622.