Parametric study of solid oxide fuel cell performance

[1]  Juergen Fleig Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance , 2003 .

[2]  Phillip N. Hutton,et al.  A macro-level model for determining the performance characteristics of solid oxide fuel cells , 2004 .

[3]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[4]  Yoshio Matsuzaki,et al.  Evaluation and modeling of performance of anode-supported solid oxide fuel cell , 2000 .

[5]  F. Calise,et al.  Design and partial load exergy analysis of hybrid SOFC–GT power plant , 2006 .

[6]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[7]  N. Sammes,et al.  Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects , 2005 .

[8]  M. Khaleel,et al.  A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC® , 2004 .

[9]  Ching-ju Wen,et al.  The Overpotential of Nickel/Yttria‐Stabilized Zirconia Cermet Anodes Used in Solid Oxide Fuel Cells , 2000 .

[10]  Christos A. Frangopoulos,et al.  Towards synthesis optimization of a fuel-cell based plant , 1999 .

[11]  Phillip N. Hutton,et al.  A cell-level model for a solid oxide fuel cell operated with syngas from a gasification process , 2005 .

[12]  Xiaohua Deng,et al.  Geometrical modeling of the triple-phase-boundary in solid oxide fuel cells , 2005 .

[13]  S. Jiang,et al.  An electrode kinetics study of H2 oxidation on Ni/Y2O3–ZrO2 cermet electrode of the solid oxide fuel cell , 1999 .

[14]  Tong Seop Kim,et al.  Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model , 2005 .

[15]  J. Frade,et al.  Assessment of Ni/YSZ anodes prepared by combustion synthesis , 2002 .

[16]  S. Chan,et al.  Polarization effects in electrolyte/electrode-supported solid oxide fuel cells , 2002 .

[17]  M. Fowler,et al.  Performance comparison of Fick’s, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode , 2003 .

[18]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[19]  William J. Wepfer,et al.  Prediction of on-design and off-design performance for a solid oxide fuel cell power module , 1996 .

[20]  Laura Schaefer,et al.  Numerical study of a flat-tube high power density solid oxide fuel cell: Part I. Heat/mass transfer and fluid flow , 2005 .

[21]  Paola Costamagna,et al.  Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC) , 2004 .

[22]  S. Barnett,et al.  An Octane-Fueled Solid Oxide Fuel Cell , 2005, Science.

[23]  Ashok Rao,et al.  Analysis and optimization of a solid oxide fuel cell and intercooled gas turbine (SOFC-ICGT) hybrid cycle , 2004 .

[24]  Yoshitaka Inui,et al.  Performance simulation of planar SOFC using mixed hydrogen and carbon monoxide gases as fuel , 2006 .

[25]  Koichi Kobayashi,et al.  Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy , 2001 .

[26]  M. Mogensen,et al.  Kinetic and geometric aspects of solid oxide fuel cell electrodes , 1996 .

[27]  A. Mcevoy,et al.  Electrocatalysis in Solid Oxide Fuel Cell Electrode Domains , 1995 .

[28]  H. Ho,et al.  Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant , 2002 .

[29]  Peter Heidebrecht,et al.  Model-based prediction of suitable operating range of a SOFC for an Auxiliary Power Unit , 2005 .

[30]  Paola Costamagna,et al.  Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization , 1998 .

[31]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[32]  Comas Haynes,et al.  ‘Design for power’ of a commercial grade tubular solid oxide fuel cell , 2000 .

[33]  K. Sumathy,et al.  Potential of renewable hydrogen production for energy supply in Hong Kong , 2006 .

[34]  Yoshitaka Inui,et al.  High performance SOFC/GT combined power generation system with CO2 recovery by oxygen combustion method , 2005 .

[35]  Yoshitaka Inui,et al.  Proposal of high performance SOFC combined power generation system with carbon dioxide recovery , 2003 .

[36]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[37]  Kirill V. Lobachyov,et al.  High efficiency coal-fired power plant of the future , 1997 .

[38]  A. Mcevoy,et al.  A study on the La1 − xSrxMnO3 oxygen cathode , 1996 .

[39]  S. Jiang,et al.  Hydrogen Oxidation at the Nickel and Platinum Electrodes on Yttria‐Tetragonal Zirconia Electrolyte , 1997 .

[40]  R. Herbin,et al.  Three-dimensional numerical simulation for various geometries of solid oxide fuel cells , 1996 .

[41]  S. Cocchi,et al.  A global thermo-electrochemical model for SOFC systems design and engineering , 2003 .

[42]  Eric Croiset,et al.  Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models , 2004 .

[43]  Dennis Y.C. Leung,et al.  An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production , 2006 .