Multi-dimensional Limiting Strategy for Higher-order CFD Methods - Progress and Issue (Invited)

Authors appreciate the financial supports by the EDISON program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2011-0020559) and by NSL (National Space Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2014M1A3A3A02034856). This work is also partially supported by the RoK ST&R project of Lockheed Martin Corporation. Authors also appreciate the computing resources provided by the KISTI Supercomputing Center(KSC-2014-C3-054).

[1]  J. Remacle,et al.  Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws , 2004 .

[2]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[3]  Florian R. Menter,et al.  Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes , 2009 .

[4]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[5]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[6]  Neil D. Sandham,et al.  Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters , 1999 .

[7]  Chongam Kim,et al.  Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part I Spatial discretization , 2005 .

[8]  Chongam Kim,et al.  Multi-dimensional limiting process for finite volume methods on unstructured grids , 2012 .

[9]  Zhi J. Wang,et al.  A Parameter-Free Generalized Moment Limiter for High-Order Methods on Unstructured Grids , 2009 .

[10]  Chongam Kim,et al.  Higher-order multi-dimensional limiting strategy for discontinuous Galerkin methods in compressible inviscid and viscous flows , 2014 .

[11]  Jun Zhu,et al.  Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes , 2009, J. Sci. Comput..

[12]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[13]  Zhiliang Xu,et al.  Point-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws , 2011, J. Comput. Phys..

[14]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[15]  P. Keast Moderate-degree tetrahedral quadrature formulas , 1986 .

[16]  Pierre Sagaut,et al.  A problem-independent limiter for high-order Runge—Kutta discontinuous Galerkin methods , 2001 .

[17]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[18]  Oh-Hyun Rho,et al.  Methods for the accurate computations of hypersonic flows: I. AUSMPW + scheme , 2001 .

[19]  Chongam Kim,et al.  Cures for the shock instability: development of a shock-stable Roe scheme , 2003 .

[20]  Zhi Jian Wang,et al.  A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids , 2009, J. Comput. Phys..

[21]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[22]  Andrew W. Cook,et al.  Short Note: Hyperviscosity for shock-turbulence interactions , 2005 .

[23]  Chongam Kim,et al.  Multi-dimensional limiting process for three-dimensional flow physics analyses , 2008, J. Comput. Phys..

[24]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[25]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[26]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[27]  J. Flaherty,et al.  Parallel, adaptive finite element methods for conservation laws , 1994 .

[28]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[29]  Zhiliang Xu,et al.  Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells , 2009, J. Comput. Phys..

[30]  H. T. Huynh,et al.  A Reconstruction Approach to High -Order Schemes Including Discontinuous Galerkin for Diffusion , 2009 .

[31]  Zhi Jian Wang,et al.  A conservative correction procedure via reconstruction formulation with the Chain-Rule divergence evaluation , 2013, J. Comput. Phys..

[32]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[33]  Rainald Löhner,et al.  A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids , 2008, J. Comput. Phys..

[34]  Antony Jameson,et al.  Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists , 2011 .

[35]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[36]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes for Triangular Elements , 2012, J. Sci. Comput..

[37]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[38]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[39]  H. T. Huynh,et al.  Differential Formulation of Discontinuous Galerkin and Related Methods for the Navier-Stokes Equations , 2013 .

[40]  Se-Myong Chang,et al.  On the shock–vortex interaction in Schardin's problem , 2000 .

[41]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[42]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[43]  Z. Wang High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .

[44]  Chongam Kim,et al.  Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids , 2005, J. Comput. Phys..

[45]  Dimitris Drikakis,et al.  Mach number effects on shock-bubble interaction , 2001 .

[46]  Per-Olof Persson,et al.  RANS Solutions Using High Order Discontinuous Galerkin Methods , 2007 .