Defensive Bacteriome Symbiont with a Drastically Reduced Genome
暂无分享,去创建一个
Moriya Ohkuma | Masahira Hattori | Roberta Teta | Alfonso Mangoni | Jörn Piel | Keiko Okamura | Atsushi Nakabachi | Yuichi Hongoh | M. Hattori | R. Ueoka | A. Nakabachi | N. Oldham | T. Fukatsu | S. Miyagishima | K. Oshima | M. Ohkuma | Y. Hongoh | J. Piel | R. Teta | Neil J. Oldham | Kenshiro Oshima | A. Mangoni | M. Gurgui | G. Echten-Deckert | K. Okamura | Kohei Yamamoto | H. Inoue | Shin-ya Miyagishima | Takema Fukatsu | Reiko Ueoka | Mihaela Gurgui | Gerhild van Echten-Deckert | Kohei Yamamoto | Hiromitsu Inoue | Reiko Ueoka | Yuichi Hongoh
[1] C. A. Soares,et al. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills , 2013, Proceedings of the National Academy of Sciences of the United States of America.
[2] Daniel B. Sloan,et al. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. , 2012, Molecular biology and evolution.
[3] Andrew W. Han,et al. Genome streamlining and chemical defense in a coral reef symbiosis , 2012, Proceedings of the National Academy of Sciences.
[4] N. Moran,et al. Extreme genome reduction in symbiotic bacteria , 2011, Nature Reviews Microbiology.
[5] J. McCutcheon,et al. An Interdependent Metabolic Patchwork in the Nested Symbiosis of Mealybugs , 2011, Current Biology.
[6] Martin Sims,et al. Electron-induced dissociation of singly charged organic cations as a tool for structural characterization of pharmaceutical type molecules. , 2011, Analytical chemistry.
[7] Fanghui Wu,et al. Total synthesis of pederin and analogues. , 2011, Angewandte Chemie.
[8] G. Lim-Fong,et al. Bryostatins: biological context and biotechnological prospects. , 2010, Current opinion in biotechnology.
[9] Peter D. Karp,et al. EcoCyc: a comprehensive database of Escherichia coli biology , 2010, Nucleic Acids Res..
[10] J. Piel. Biosynthesis of polyketides by trans-AT polyketide synthases. , 2010, Natural product reports.
[11] N. Moran,et al. Functional Convergence in Reduced Genomes of Bacterial Symbionts Spanning 200 My of Evolution , 2010, Genome biology and evolution.
[12] Robert L. Unckless,et al. Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont , 2010, Science.
[13] J. McCutcheon. The bacterial essence of tiny symbiont genomes. , 2010, Current opinion in microbiology.
[14] M. Kaltenpoth,et al. Actinobacteria as mutualists: general healthcare for insects? , 2009, Trends in microbiology.
[15] N. Moran,et al. Convergent evolution of metabolic roles in bacterial co-symbionts of insects , 2009, Proceedings of the National Academy of Sciences.
[16] Karyn N. Johnson,et al. Symbiont-mediated protection in insect hosts. , 2009, Trends in microbiology.
[17] M. Platzer,et al. Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. , 2009, Nature chemical biology.
[18] Katrin Zimmermann,et al. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid. , 2009, Journal of the American Chemical Society.
[19] M. Ashburner,et al. The Bacterial Symbiont Wolbachia Induces Resistance to RNA Viral Infections in Drosophila melanogaster , 2008, PLoS biology.
[20] N. Moran,et al. Genomics and evolution of heritable bacterial symbionts. , 2008, Annual review of genetics.
[21] Karyn N. Johnson,et al. Wolbachia and Virus Protection in Insects , 2008, Science.
[22] J. Werren,et al. Wolbachia: master manipulators of invertebrate biology , 2008, Nature Reviews Microbiology.
[23] S. Garcia-Vallvé,et al. CAIcal: A combined set of tools to assess codon usage adaptation , 2008, Biology Direct.
[24] Yuji Nagata,et al. GenomeMatcher: A graphical user interface for DNA sequence comparison , 2008, BMC Bioinformatics.
[25] Kazutaka Katoh,et al. Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..
[26] T. Vogel,et al. Antibiotic-resistant soil bacteria in transgenic plant fields , 2008, Proceedings of the National Academy of Sciences.
[27] Eleanor R Haine,et al. Symbiont-mediated protection , 2008, Proceedings of the Royal Society B: Biological Sciences.
[28] H. Jenke-Kodama,et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection , 2008, Nature Biotechnology.
[29] N. Moran,et al. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis , 2007, Proceedings of the National Academy of Sciences.
[30] Hajime Ishikawa,et al. The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella , 2006, Science.
[31] Alexandros Stamatakis,et al. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..
[32] Phat L Tran,et al. Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters , 2006, PLoS biology.
[33] J. Bové,et al. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus [Asia; South Africa; Brazil; Florida] , 2006 .
[34] H. Godfray,et al. Aphid Protected from Pathogen by Endosymbiont , 2005, Science.
[35] J. Eisen,et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[36] Matthias Platzer,et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[37] S. Halbert,et al. ASIAN CITRUS PSYLLIDS (STERNORRHYNCHA: PSYLLIDAE) AND GREENING DISEASE OF CITRUS: A LITERATURE REVIEW AND ASSESSMENT OF RISK IN FLORIDA , 2004 .
[38] N. Moran,et al. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[39] Jörn Piel,et al. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[40] R. Kellner. Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paederus sabaeus (Coleoptera: Staphylinidae). , 2002, Insect biochemistry and molecular biology.
[41] T. Fukatsu,et al. Complex Endosymbiotic Microbiota of the Citrus Psyllid Diaphorina citri (Homoptera: Psylloidea) , 2000 .
[42] S. Salzberg,et al. Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.
[43] S. Salzberg,et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.
[44] P. Green,et al. Consed: a graphical tool for sequence finishing. , 1998, Genome research.
[45] P Green,et al. Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.
[46] P. Green,et al. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.
[47] M. Borodovsky,et al. GeneMark.hmm: new solutions for gene finding. , 1998, Nucleic acids research.
[48] Thomas L. Madden,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.
[49] S. Eddy,et al. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.
[50] R. Kellner,et al. Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring , 1996, Oecologia.
[51] K. Dettner,et al. Allocation of pederin during lifetime ofPaederus rove beetles (Coleoptera: Staphylinidae): Evidence for polymorphism of hemolymph toxin , 1995, Journal of Chemical Ecology.
[52] Mark Borodovsky,et al. GENMARK: Parallel Gene Recognition for Both DNA Strands , 1993, Comput. Chem..
[53] P. Sharp,et al. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.
[54] G. V. Manley. Paederus fuscipes [Col.: Staphylinidae]: A predator of rice fields in west Malaysia , 1977, Entomophaga.
[55] J. Profft. Beitrage zur symbiose der aphiden und psylliden , 1937, Zeitschrift für Morphologie und Ökologie der Tiere.
[56] N. Moran,et al. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. , 2010, Annual review of entomology.
[57] Yuki Moriya,et al. KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Nucleic Acids Res..
[58] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.
[59] Andrei N Lupas,et al. PhyloGenie: automated phylome generation and analysis. , 2004, Nucleic acids research.
[60] Michael Y. Galperin,et al. The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..
[61] S. Osawa,et al. The guanine and cytosine content of genomic DNA and bacterial evolution. , 1987, Proceedings of the National Academy of Sciences of the United States of America.
[62] Paederus riparius. ALLOCATION OF PEDERIN DURING LIFETIME OF Paederus ROVE BEETLES (COLEOPTERA: STAPHYLINIDAE): EVIDENCE FOR POLYMORPHISM OF HEMOLYMPH TOXIN , 2022 .