First results from the IllustrisTNG simulations: the galaxy colour bimodality

We introduce the first two simulations of the IllustrisTNG project, a next generation of cosmological magnetohydrodynamical simulations, focusing on the optical colors of galaxies. We explore TNG100, a rerun of the original Illustris box, and TNG300, which includes 2x2500^3 resolution elements in a volume twenty times larger. Here we present first results on the galaxy color bimodality at low redshift. Accounting for the attenuation of stellar light by dust, we compare the simulated (g-r) colors of 10^9 10^11 Msun which redden at z<1 accumulate on average ~25% of their final z=0 mass post-reddening; at the same time, ~18% of such massive galaxies acquire half or more of their final stellar mass while on the red sequence.

[1]  Annalisa Pillepich,et al.  Simulating galaxy formation with the IllustrisTNG model , 2017, 1703.02970.

[2]  C. Frenk,et al.  Optical colours and spectral indices of z = 0.1 eagle galaxies with the 3D dust radiative transfer code skirt , 2017, 1705.02331.

[3]  R. Dav'e,et al.  mufasa: the assembly of the red sequence , 2017, 1704.01135.

[4]  R. Mandelbaum,et al.  Mapping stellar content to dark matter haloes - III. Environmental dependence and conformity of galaxy colours , 2017, 1703.09219.

[5]  D. Eisenstein,et al.  The Color and Stellar Mass Dependence of Small-scale Galaxy Clustering in SDSS-III BOSS , 2017, 1702.03933.

[6]  L. Simard,et al.  Galaxies in the Illustris simulation as seen by the Sloan Digital Sky Survey - II. Size-luminosity relations and the deficit of bulge-dominated galaxies in Illustris at low mass , 2017, 1701.08206.

[7]  Mari Kawakatsu,et al.  MORPHOLOGY AND THE COLOR–MASS DIAGRAM AS CLUES TO GALAXY EVOLUTION AT z ∼ 1 , 2017, 1701.04716.

[8]  L. Simard,et al.  Galaxies in the Illustris simulation as seen by the Sloan Digital Sky Survey - I: Bulge+disc decompositions, methods, and biases. , 2017, 1701.01451.

[9]  G. Stinson,et al.  Quenching vs. Quiescence: forming realistic massive ellipticals with a simple starvation model , 2017, 1701.01130.

[10]  J. Newman,et al.  The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations , 2016, 1611.03869.

[11]  P. Schneider,et al.  The inner structure of early-type galaxies in the Illustris simulation , 2016, 1610.07605.

[12]  V. Springel,et al.  The role of mergers and halo spin in shaping galaxy morphology , 2016, 1609.09498.

[13]  Liverpool John Moores University,et al.  The dark nemesis of galaxy formation : why hot haloes trigger black hole growth and bring star formation to an end , 2016, 1607.07445.

[14]  V. Springel,et al.  Simulating galaxy formation with black hole driven thermal and kinetic feedback , 2016, 1607.03486.

[15]  J. Bel,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS). The decline of cosmic star formation: quenching, mass, and environment connections , 2016, 1611.07049.

[16]  L. Hernquist,et al.  THE INFORMATION CONTENT OF STELLAR HALOS: STELLAR POPULATION GRADIENTS AND ACCRETION HISTORIES IN EARLY-TYPE ILLUSTRIS GALAXIES , 2016, 1610.00014.

[17]  Benjamin D. Johnson,et al.  Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.

[18]  Edinburgh,et al.  The evolution of post-starburst galaxies from z=2 to 0.5 , 2016, 1608.00588.

[19]  C. Pichon,et al.  The Horizon-AGN Simulation: Morphological Diversity of Galaxies ,Promoted by AGN Feedback , 2016, 1606.03086.

[20]  P. Hopkins,et al.  MUFASA: Galaxy Formation Simulations With Meshless Hydrodynamics , 2016, 1604.01418.

[21]  C. Walcher,et al.  Physical properties of galaxies: towards a consistent comparison between hydrodynamical simulations and SDSS , 2016, 1602.06297.

[22]  Durham,et al.  It is not easy being green: the evolution of galaxy colour in the EAGLE simulation , 2016, 1601.07907.

[23]  Klaus Dolag,et al.  SZ effects in the Magneticum Pathfinder Simulation: Comparison with the Planck, SPT, and ACT results , 2015, 1509.05134.

[24]  Caltech,et al.  Dust Formation in Milky Way-like Galaxies , 2015, 1505.04792.

[25]  Liverpool John Moores University,et al.  Galaxy and Mass Assembly (GAMA): Projected Galaxy Clustering , 2015, 1509.02159.

[26]  M. Postman,et al.  STAR FORMATION ACTIVITY IN CLASH BRIGHTEST CLUSTER GALAXIES , 2015, 1509.00487.

[27]  T. Schrabback,et al.  STAR-FORMING BRIGHTEST CLUSTER GALAXIES AT 0.25 < z < 1.25: A TRANSITIONING FUEL SUPPLY , 2015, 1508.06283.

[28]  C. Walcher,et al.  Biases and systematics in the observational derivation of galaxy properties: comparing different techniques on synthetic observations of simulated galaxies , 2015, 1507.00347.

[29]  A. Quirrenbach,et al.  The CALIFA survey across the Hubble sequence: Spatially resolved stellar population properties in galaxies , 2015, 1506.04157.

[30]  Durham,et al.  Colours and luminosities of z = 0.1 galaxies in the eagle simulation , 2015, 1504.04374.

[31]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[32]  C. McBride,et al.  Galaxy morphology and star formation in the Illustris Simulation at z = 0 , 2015, 1502.07747.

[33]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[34]  Annalisa Pillepich,et al.  The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models , 2015, 1502.01339.

[35]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[36]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[37]  C. McBride,et al.  Synthetic galaxy images and spectra from the Illustris simulation , 2014, 1411.3717.

[38]  V. Springel,et al.  The colours of satellite galaxies in the Illustris simulation , 2014, 1410.7400.

[39]  S. White,et al.  Galaxy formation in the Planck cosmology – I. Matching the observed evolution of star formation rates, colours and stellar masses , 2014, 1410.0365.

[40]  Shy Genel,et al.  The Illustris simulation: the evolving population of black holes across cosmic time , 2014, 1408.6842.

[41]  A. Hopkins,et al.  Galaxy And Mass Assembly: Deconstructing Bimodality - I. Red ones and blue ones , 2014, 1408.5984.

[42]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[43]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[44]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[45]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[46]  R. Cen EVOLUTION OF COLD STREAMS AND THE EMERGENCE OF THE HUBBLE SEQUENCE , 2014, 1405.0516.

[47]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[48]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[49]  Judith G. Cohen,et al.  THE UNIVERSAL STELLAR MASS–STELLAR METALLICITY RELATION FOR DWARF GALAXIES , 2013, 1310.0814.

[50]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[51]  J. Schaye,et al.  On the evolution of the H i column density distribution in cosmological simulations , 2012, 1210.7808.

[52]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[53]  S. White,et al.  Satellite abundances around bright isolated galaxies , 2012, 1203.0009.

[54]  R. Davé,et al.  The growth of red sequence galaxies in a cosmological hydrodynamic simulation , 2012, 1202.5315.

[55]  Andreas Bauer,et al.  Magnetohydrodynamics on an unstructured moving grid , 2011, 1108.1792.

[56]  V. Wild,et al.  Empirical determination of the shape of dust attenuation curves in star-forming galaxies , 2011, 1106.1646.

[57]  A. Benson Galacticus: A Semi-Analytic Model of Galaxy Formation , 2010, 1008.1786.

[58]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[59]  I. Chilingarian,et al.  SDSS J150634.27+013331.6: the second compact elliptical galaxy in the NGC 5846 group★ , 2010, 1003.1663.

[60]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[61]  I. Chilingarian,et al.  Analytical approximations of K-corrections in optical and near-infrared bands , 2010, 1002.2360.

[62]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.

[63]  F. Marulli,et al.  Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type , 2009, 0910.1093.

[64]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[65]  A. Sansom,et al.  Stellar populations in the centres of brightest cluster galaxies , 2009, 0906.0287.

[66]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .

[67]  S. White,et al.  High-redshift galaxy populations and their descendants , 2008, 0809.4259.

[68]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[69]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[70]  S. Courteau,et al.  Scaling relations and the fundamental line of the local group dwarf galaxies , 2008, 0807.1331.

[71]  Changbom Park,et al.  Galactic satellite systems: radial distribution and environment dependence of galaxy morphology , 2008, 0805.0637.

[72]  R. Davé,et al.  Accretion, feedback and galaxy bimodality: a comparison of the GalICS semi‐analytic model and cosmological SPH simulations , 2006, astro-ph/0605750.

[73]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[74]  S. Khochfar,et al.  Properties of Early-Type, Dry Galaxy Mergers and the Origin of Massive Elliptical Galaxies , 2005, astro-ph/0509667.

[75]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[76]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[77]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[78]  A. Fontana,et al.  Bimodal Color Distribution in Hierarchical Galaxy Formation , 2005, astro-ph/0506387.

[79]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[80]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[81]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[82]  Y. Jing,et al.  Semianalytical Model of Galaxy Formation with High-Resolution N-Body Simulations , 2004, astro-ph/0408475.

[83]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[84]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[85]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[86]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[87]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[88]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[89]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[90]  H. M. P. Couchman,et al.  Galaxy Clusters in Hubble Volume Simulations: Cosmological Constraints from Sky Survey Populations , 2001, astro-ph/0110246.

[91]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[92]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[93]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[94]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[95]  D. Fabricant,et al.  A High Merger Fraction in the Rich Cluster MS 1054–03 at z = 0.83: Direct Evidence for Hierarchical Formation of Massive Galaxies , 1999, astro-ph/9905394.

[96]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[97]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[98]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[99]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[100]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[101]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[102]  A. G. Bruzual Spectral evolution of galaxies. 1. Early-type systems , 1983 .

[103]  S. White,et al.  Nonlinear evolution of large-scale structure in the universe , 1983 .