Phase-Change Memory and Optical Data Storage

Phase-change memory is regarded as the most appealing of the nonvolatile memory technologies, with attractive properties including scalability, bit alterability, and fast write/erase and read performance. Over the past decade, the technology has experienced rapid growth. Well-known semiconductor manufacturers such as IBM, Infineon, Samsung, and Macronix have spared no effort in the push to commercialize this technology. At the same time, many novel phase-change materials have been developed, such as typical Ge-Sb-Te alloys, Zn-Sb-Te alloys, and ZnO-\(\mathrm{Sb_{2}Te_{3}}\) nanocomposite.

[1]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[2]  G. Grest,et al.  Erratum: Liquid-glass transition, a free-volume approach , 1982 .

[3]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[4]  Matthias Wuttig,et al.  Reversible switching in phase-change materials , 2008 .

[5]  D. Ielmini,et al.  Phase change materials and their application to nonvolatile memories. , 2010, Chemical reviews.

[6]  Y. K. Kim,et al.  Changes in the electronic structures and optical band gap of Ge2Sb2Te5 and N-doped Ge2Sb2Te5 during phase transition , 2007 .

[7]  Bo Liu,et al.  Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications , 2012 .

[8]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[9]  B. Kooi,et al.  Crystallization Kinetics of Supercooled Liquid Ge–Sb Based on Ultrafast Calorimetry , 2016 .

[10]  Songlin Feng,et al.  Ti10Sb60Te30 for phase change memory with high-temperature data retention and rapid crystallization speed , 2012 .

[11]  Zhitang Song,et al.  Microstructure evolution and crystallography of the phase-change material TiSbTe films annealed in situ , 2016 .

[12]  J. H. Coombs,et al.  Laser‐induced crystallization phenomena in GeTe‐based alloys. I. Characterization of nucleation and growth , 1995 .

[13]  Ming-Jinn Tsai,et al.  Ga2Te3Sb5—A Candidate for Fast and Ultralong Retention Phase‐Change Memory , 2009 .

[14]  M. Wuttig,et al.  Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys , 2004 .

[16]  N. Sun,et al.  Effect of the Sn dopant on the crystallization of amorphous Ge2Sb2Te5 films induced by an excimer laser , 2015 .

[17]  Young Kook Lee,et al.  Effect of Heating Rate on the Activation Energy for Crystallization of Amorphous Ge2Sb2Te5 Thin Film , 2009 .

[18]  Masaya Notomi,et al.  Optical memory: Phase-change memory , 2015 .

[19]  Daniel W. Hewak,et al.  Fragile‐to‐Strong Crossover in Supercooled Liquid Ag‐In‐Sb‐Te Studied by Ultrafast Calorimetry , 2015 .

[20]  Jeong-Woo Park,et al.  Characterization of Amorphous Phases of Ge2Sb2Te5 Phase-Change Optical Recording Material on Their Crystallization Behavior , 1999 .

[21]  H. Sohn,et al.  Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films , 2009 .

[22]  William J. Gallagher,et al.  Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited) , 1999 .

[23]  Understanding the role of Zn in improving the phase change behaviors of Sb2Te3 films , 2015 .

[24]  Rong Huang,et al.  Amorphous thermal stability of Al-doped Sb2Te3 films for phase-change memory application , 2013 .

[25]  Song-Yeu Tsai,et al.  Thermal- and Laser-Induced Order–Disorder Switching of Ag-Doped Fast-Growth Sb70Te30 Phase-Change Recording Films , 2007, IEEE Transactions on Magnetics.

[26]  Bo Liu,et al.  W-Sb-Te phase-change material: A candidate for the trade-off between programming speed and data retention , 2012 .

[27]  Noboru Yamada,et al.  From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. , 2011, Nature materials.

[28]  Bingchu Cai,et al.  Effects of si doping on the structural and electrical properties of Ge2Sb2Te5 films for phase change random access memory , 2006 .

[29]  J. Přikryl,et al.  Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study , 2009 .

[30]  Influence of the additive Ag for crystallization of amorphous Ge―Sb―Te thin films , 2009 .

[31]  Se-Young Choi,et al.  Phase transition characteristics of Bi/Sn doped Ge2Sb2Te5thin film for PRAM application , 2007 .

[32]  F. Rao,et al.  Performance improvement of Sb2Te3 phase change material by Al doping , 2011 .

[33]  Carl V. Thompson,et al.  On the approximation of the free energy change on crystallization , 1979 .

[34]  Daniel Krebs,et al.  Crystal growth within a phase change memory cell , 2014, Nature Communications.

[35]  R. O. Jones Bonding in phase change materials: concepts and misconceptions , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Bo Liu,et al.  Al1.3Sb3Te material for phase change memory application , 2011 .

[37]  Yoshihisa Fujisaki,et al.  Overview of emerging semiconductor non-volatile memories , 2012, IEICE Electron. Express.

[38]  Yung-Sung Hsu,et al.  Optical Properties and Crystallization Characteristics of Ge-Doped Sb70Te30 Phase Change Recording Film , 2003 .

[39]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[40]  Xiang Shen,et al.  Unraveling the Crystallization Kinetics of Supercooled Liquid GeTe by Ultrafast Calorimetry , 2017 .

[41]  Chih-Yuan Lu Future prospects of NAND flash memory technology--the evolution from floating gate to charge trapping to 3D stacking. , 2012, Journal of nanoscience and nanotechnology.

[42]  Songlin Feng,et al.  Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application , 2012 .

[43]  M. Fontana,et al.  Crystallization process on amorphous GeTeSb samples near to eutectic point Ge15Te85 , 2009 .

[44]  Liangcai Wu,et al.  Improved phase-change characteristics of Zn-doped amorphous Sb7Te3 films for high-speed and low-power phase change memory , 2013 .

[45]  J. Mauro,et al.  Fragile-to-strong transition in metallic glass-forming liquids. , 2010, The Journal of chemical physics.

[46]  Lian Yu,et al.  Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. , 2008, The Journal of chemical physics.

[47]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[48]  J. Robertson,et al.  Bonding origin of optical contrast in phase-change memory materials , 2010 .

[49]  Songlin Feng,et al.  Influence of silicon on the thermally-induced crystallization process of Si-Sb4Te phase change materials , 2011 .

[50]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[51]  Crystallization and C-RAM application of Ag-doped Sb2Te3 material , 2006 .

[52]  Q. Nie,et al.  Characterization of Physical Properties for Zn-Doped Sb3Te Films , 2013 .

[53]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[54]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[55]  P. K. Tan,et al.  Temperature Dependence of Phase-Change Random Access Memory Cell , 2006 .

[56]  Herman J. Borg,et al.  Trends in optical recording , 1999 .

[57]  Edgar Dutra Zanotto,et al.  Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? , 2010, The Journal of chemical physics.

[58]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[59]  C. David Wright,et al.  On‐Chip Photonic Memory Elements Employing Phase‐Change Materials , 2014, Advanced materials.

[60]  Richard Dronskowski,et al.  The role of vacancies and local distortions in the design of new phase-change materials. , 2007, Nature materials.

[61]  A. Visconti,et al.  Reliability Characterization Issues for Nanoscale Flash Memories: A Case Study on 45-nm NOR Devices , 2013, IEEE Transactions on Device and Materials Reliability.

[62]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[63]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[64]  Kumar Virwani,et al.  Phase transitions in Ge-Sb phase change materials , 2009 .

[65]  D. Zeng,et al.  Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method , 2004 .

[66]  Noboru Yamada,et al.  Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states , 2006 .

[67]  Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials , 2012, 1201.5678.

[68]  Hongbo Lan,et al.  UV-nanoimprint lithography: structure, materials and fabrication of flexible molds. , 2013, Journal of nanoscience and nanotechnology.

[69]  Liangcai Wu,et al.  Phase change behaviors of Zn-doped Ge2Sb2Te5 films , 2012 .

[70]  E. Rimini,et al.  Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements , 2004 .

[71]  Liangcai Wu,et al.  Enhanced thermal stability and electrical behavior of Zn-doped Sb2Te films for phase change memory application , 2013 .

[72]  S. Lai Brief history of ETOX NOR flash memory. , 2012, Journal of nanoscience and nanotechnology.

[73]  Harish Bhaskaran,et al.  Photonic non-volatile memories using phase change materials , 2012 .

[74]  S. G. Bishop,et al.  Distribution of nanoscale nuclei in the amorphous dome of a phase change random access memory , 2014 .

[75]  Hisashi Shima,et al.  Resistive Random Access Memory (ReRAM) Based on Metal Oxides , 2010, Proceedings of the IEEE.

[76]  Au doped Sb3Te phase-change material for C-RAM device , 2008 .