Fast random number generation with spontaneous emission noise of a single-mode semiconductor laser

We experimentally demonstrate a 12.5 Gb s−1 random number generator based on measuring the spontaneous emission noise of a single-mode semiconductor laser. The spontaneous emission of light is quantum mechanical in nature and is an inborn physical entropy source of true randomness. By combining a high-speed analog-to-digital converter and off-line processing, random numbers are extracted from the spontaneous emission with the verified randomness. The generator is simple, robust, and with no need of accurately tuning the comparison threshold. The use of semiconductor lasers makes it particularly compatible with the delivery of random numbers in optical networks.

[1]  Greg M. Bernstein,et al.  Secure random number generation using chaotic circuits , 1990 .

[2]  W. T. Holman,et al.  An integrated analog/digital random noise source , 1997 .

[3]  J. Alvin Connelly,et al.  A noise-based IC random number generator for applications in cryptography , 2000 .

[4]  L. Kocarev,et al.  Chaos-based random number generators-part I: analysis [cryptography] , 2001 .

[5]  L. Kocarev,et al.  Chaos-based random number generators. Part II: practical realization , 2001 .

[6]  Alessandro Trifiletti,et al.  A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC , 2003, IEEE Trans. Computers.

[7]  A. W. Sharpe,et al.  A High Speed, Post-Processing Free, Quantum Random Number Generator , 2008, ArXiv.

[8]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[9]  I Kanter,et al.  Ultrahigh-speed random number generation based on a chaotic semiconductor laser. , 2009, Physical review letters.

[10]  H. Lo,et al.  High-speed quantum random number generation by measuring phase noise of a single-mode laser. , 2010, Optics letters.

[11]  S. Deligiannidis,et al.  Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. , 2010, Optics express.

[12]  Michael A Wayne,et al.  Low-bias high-speed quantum random number generator via shaped optical pulses. , 2010, Optics express.

[13]  Hong Guo,et al.  Truly random number generation based on measurement of phase noise of a laser. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Caitlin R. S. Williams,et al.  Fast physical random number generator using amplified spontaneous emission. , 2010, Optics express.

[15]  H. Weinfurter,et al.  High speed optical quantum random number generation. , 2010, Optics express.

[16]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[17]  Ingo Fischer,et al.  Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation. , 2011, Optics letters.

[18]  Rajarshi Roy,et al.  Scalable parallel physical random number generator based on a superluminescent LED. , 2011, Optics letters.

[19]  Hong Guo,et al.  High-Speed and Bias-Free Optical Random Number Generator , 2012, IEEE Photonics Technology Letters.

[20]  Xiongfeng Ma,et al.  Ultrafast quantum random number generation based on quantum phase fluctuations. , 2011, Optics express.

[21]  Sze-Chun Chan,et al.  Random bit generation using an optically injected semiconductor laser in chaos with oversampling. , 2012, Optics letters.

[22]  Mingjiang Zhang,et al.  Delay line length selection in generating fast random numbers with a chaotic laser. , 2012, Applied optics.

[23]  D. Syvridis,et al.  Sub-Tb/s Physical Random Bit Generators Based on Direct Detection of Amplified Spontaneous Emission Signals , 2012, Journal of Lightwave Technology.

[24]  Pu Li,et al.  Can Fixed Time Delay Signature be Concealed in Chaotic Semiconductor Laser With Optical Feedback? , 2012, IEEE Journal of Quantum Electronics.

[25]  Zheng-Mao Wu,et al.  Parallel generation of 10 Gbits/s physical random number streams using chaotic semiconductor lasers , 2012 .

[26]  Pu Li,et al.  A robust random number generator based on differential comparison of chaotic laser signals. , 2012, Optics express.