TURBULENT MAGNETIC FIELD AMPLIFICATION FROM SPIRAL SASI MODES: IMPLICATIONS FOR CORE-COLLAPSE SUPERNOVAE AND PROTO-NEUTRON STAR MAGNETIZATION

We extend our investigation of magnetic field evolution in three-dimensional flows driven by the stationary accretion shock instability (SASI) with a suite of higher-resolution idealized models of the post-bounce core-collapse supernova environment. Our magnetohydrodynamic simulations vary in initial magnetic field strength, rotation rate, and grid resolution. Vigorous SASI-driven turbulence inside the shock amplifies magnetic fields exponentially; but while the amplified fields reduce the kinetic energy of small-scale flows, they do not seem to affect the global shock dynamics. The growth rate and final magnitude of the magnetic energy are very sensitive to grid resolution, and both are underestimated by the simulations. Nevertheless our simulations suggest that neutron star magnetic fields exceeding $$10^{14}$$~G can result from dynamics driven by the SASI, \emph{even for non-rotating progenitors}.

[1]  G. Batchelor On the spontaneous magnetic field in a conducting liquid in turbulent motion , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.

[3]  J. M. Leblanc,et al.  A Numerical Example of the Collapse of a Rotating Magnetized Star , 1970 .

[4]  W. Arnett,et al.  Magnetohydrodynamic phenomena in collapsing stellar cores , 1976 .

[5]  Y. Popov,et al.  The magnetohydrodynamic rotational model of supernova explosion , 1976 .

[6]  U. Frisch,et al.  Helical and Nonhelical Turbulent Dynamos , 1981 .

[7]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[8]  E. Symbalisty Magnetorotational iron core collapse , 1984 .

[9]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[10]  Kraichnan Models of intermittency in hydrodynamic turbulence. , 1990, Physical review letters.

[11]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[12]  R. Kulsrud,et al.  The spectrum of random magnetic fields in the mean field dynamo theory of the galactic magnetic field , 1992 .

[13]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[14]  C. Thompson,et al.  Neutron star dynamos and the origins of pulsar magnetism , 1993 .

[15]  Edward Ott,et al.  Stretch, Twist, Fold: The Fast Dynamo , 1995 .

[16]  S. Bruenn,et al.  The Role of Doubly Diffusive Instabilities in the Core-Collapse Supernova Mechanism , 1996 .

[17]  M. Rieutord,et al.  Magnetic structures in a dynamo simulation , 1996, Journal of Fluid Mechanics.

[18]  R. Rothschild,et al.  High Velocity Neutron Stars , 1996 .

[19]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[20]  Y. Qian,et al.  Neutrino Transport in Strongly Magnetized Proto-Neutron Stars and the Origin of Pulsar Kicks: The Effect of Asymmetric Magnetic Field Topology , 1998, astro-ph/9802345.

[21]  E. Ott Chaotic flows and kinematic magnetic dynamos: A tutorial review , 1998 .

[22]  The Generation of Magnetic Fields through Driven Turbulence , 2000, astro-ph/0003404.

[23]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[24]  J Korea,et al.  The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-dimensional Study of Nonlinear Evolution , 2000, astro-ph/0008084.

[25]  The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence , 2000, astro-ph/0006186.

[26]  Asymmetric Supernovae from Magnetocentrifugal Jets , 2001, astro-ph/0112020.

[27]  J. P. Laboratory,et al.  The Magnetorotational Instability in Core-Collapse Supernova Explosions , 2002, astro-ph/0208128.

[28]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[29]  C. Thompson,et al.  The Giant Flare of 1998 August 27 from SGR 1900+14. II. Radiative Mechanism and Physical Constraints on the Source , 2001, astro-ph/0110675.

[30]  Spectra and Growth Rates of Fluctuating Magnetic Fields in the Kinematic Dynamo Theory with Large , 2001, astro-ph/0103333.

[31]  Dynamo action by differential rotation in a stably stratified stellar interior , 2001, astro-ph/0108207.

[32]  A. Mezzacappa,et al.  Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae , 2002, astro-ph/0210634.

[33]  Structure of small-scale magnetic fields in the kinematic dynamo theory. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Is Nonhelical Hydromagnetic Turbulence Peaked at Small Scales , 2003, astro-ph/0303372.

[35]  L. Rezzolla,et al.  Mean-field dynamo action in protoneutron stars , 2003, astro-ph/0309783.

[36]  K. Subramanian,et al.  Astrophysical magnetic field and nonlinear dynamo theory , 2004, astro-ph/0405052.

[37]  Axel Brandenburg,et al.  Simulations of nonhelical hydromagnetic turbulence. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  T. Plewa,et al.  Pulsar recoil by large-scale anisotropies in supernova explosions. , 2003, Physical review letters.

[39]  C. Thompson,et al.  Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates , 2004 .

[40]  Presupernova evolution of differentially rotating massive stars including magnetic fields , 2004, astro-ph/0409422.

[41]  D. Lorimer,et al.  Handbook of Pulsar Astronomy , 2004 .

[42]  P. Londrillo,et al.  On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method , 2004 .

[43]  A. Mezzacappa,et al.  The Spherical Accretion Shock Instability in the Linear Regime , 2005, astro-ph/0507181.

[44]  A. Bonanno,et al.  Protoneutron star dynamos and pulsar magnetism , 2005 .

[45]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[46]  W. Hajdas,et al.  An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts , 2005, Nature.

[47]  Axisymmetric simulations of magneto-rotational core collapse : dynamics and gravitational wave signal , 2005, astro-ph/0510184.

[48]  M. Rampp,et al.  Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport II. Models for different progenitor stars , 2006 .

[49]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[50]  S. Moiseenko,et al.  A magnetorotational core-collapse model with jets , 2006 .

[51]  Turbulence from localized random expansion waves , 2006, astro-ph/0602057.

[52]  O. E. Bronson Messer,et al.  Modeling core collapse supernovae in 2 and 3 dimensions with spectral neutrino transport , 2006, Journal of Physics: Conference Series.

[53]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[54]  S. Yamada,et al.  Alfvén Wave-Driven Supernova Explosion , 2007, 0707.4345.

[55]  J. Blondin,et al.  Linear Growth of Spiral SASI Modes in Core-Collapse Supernovae , 2006, astro-ph/0611698.

[56]  Eli Livne,et al.  Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation , 2007 .

[57]  A. Mezzacappa,et al.  Pulsar spins from an instability in the accretion shock of supernovae , 2006, Nature.

[58]  CEA-Saclay,et al.  Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the , 2007, 0704.3001.

[59]  G. Bodo,et al.  A five-wave HLL Riemann solver for relativistic MHD , 2008, 0811.1483.

[60]  M. Aloy,et al.  Semi-global simulations of the magneto-rotational instability in core collapse supernovae , 2008, 0811.1652.

[61]  T. Foglizzo,et al.  Effect of Rotation on the Stability of a Stalled Cylindrical Shock and Its Consequences for Core-Collapse Supernovae , 2007, 0710.3041.

[62]  Reuben D. Budiardja,et al.  GENERATION OF MAGNETIC FIELDS BY THE STATIONARY ACCRETION SHOCK INSTABILITY , 2008, 0811.3385.

[63]  A. Marek,et al.  DELAYED NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS AIDED BY THE STANDING ACCRETION-SHOCK INSTABILITY , 2007, 0708.3372.

[64]  J. Sato,et al.  THE SATURATION OF SASI BY PARASITIC INSTABILITIES , 2009, 0910.3953.

[65]  Andrea Mignone,et al.  A five‐wave Harten–Lax–van Leer Riemann solver for relativistic magnetohydrodynamics , 2009 .

[66]  K. Kotake,et al.  SPECIAL RELATIVISTIC SIMULATIONS OF MAGNETICALLY DOMINATED JETS IN COLLAPSING MASSIVE STARS , 2007, 0712.1949.

[67]  Y. Kaneda,et al.  Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation , 2009 .

[68]  G. Meynet,et al.  Massive star models with magnetic braking , 2010, 1011.5795.

[69]  K. Kotake,et al.  Explosion Geometry of a Rotating 13 $\ M_{\odot}$ Star Driven by the SASI-Aided Neutrino-Heating Supernova Mechanism , 2009, 0912.1157.

[70]  Christoph Federrath,et al.  THE GENERATION OF STRONG MAGNETIC FIELDS DURING THE FORMATION OF THE FIRST STARS , 2010 .

[71]  R. Fern'andez THE SPIRAL MODES OF THE STANDING ACCRETION SHOCK INSTABILITY , 2010, 1003.1730.

[72]  T. Foglizzo,et al.  DYNAMICS OF AN ALFVÉN SURFACE IN CORE COLLAPSE SUPERNOVAE , 2010, 1006.4697.

[73]  W. Arnett,et al.  TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE , 2011, 1101.5646.

[74]  Christoph Federrath,et al.  A NEW JEANS RESOLUTION CRITERION FOR (M)HD SIMULATIONS OF SELF-GRAVITATING GAS: APPLICATION TO MAGNETIC FIELD AMPLIFICATION BY GRAVITY-DRIVEN TURBULENCE , 2011, 1102.0266.

[75]  T. Foglizzo,et al.  Shallow water analogue of the standing accretion shock instability: experimental demonstration and a two-dimensional model. , 2011, Physical review letters.