Stability and functionality of cysteine‐less FOF1 ATP synthase from Escherichia coli

[1]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[2]  P. Sternweis,et al.  Purification and properties of reconstitutively active and inactive adenosinetriphosphatase from Escherichia coli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. C. Chang,et al.  Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid , 1978, Journal of bacteriology.

[4]  A. Fabiato,et al.  Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. , 1979, Journal de physiologie.

[5]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[6]  D. Klionsky,et al.  In vivo evidence for the role of the epsilon subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli , 1984, Journal of bacteriology.

[7]  P. Pedersen,et al.  Determination of microgram quantities of protein in the presence of milligram levels of lipid with amido black 10B. , 1985, Analytical biochemistry.

[8]  Y. Moriyama,et al.  One-step purification of Escherichia coli H(+)-ATPase (F0F1) and its reconstitution into liposomes with neurotransmitter transporters. , 1991, The Journal of biological chemistry.

[9]  Stephen H. White,et al.  Membrane protein structure: experimental approaches , 1994 .

[10]  M. Futai,et al.  The ATP synthase gamma subunit. Suppressor mutagenesis reveals three helical regions involved in energy coupling. , 1995, The Journal of biological chemistry.

[11]  J. Schäfer,et al.  The polymerase chain reaction. Herausgegeben von K. B. Mullis, F. Ferre und R. A. Gibbs. 458 Seiten, 112 Abbildungen, zahlr. Tabellen, Birkhäuser, Boston, Basel, Berlin 1994. Preis: 169, — DM , 1995 .

[12]  Mechanisms of Active Transport in the FOF1 ATP Synthase , 1996, The Journal of Membrane Biology.

[13]  V. V. Bulygin,et al.  ATP hydrolysis by membrane-bound Escherichia coli F0F1 causes rotation of the gamma subunit relative to the beta subunits. , 1996, Biochimica et biophysica acta.

[14]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[15]  J. Weber,et al.  Catalytic mechanism of F1-ATPase. , 1997, Biochimica et biophysica acta.

[16]  R. Nakamoto,et al.  Energy Coupling, Turnover, and Stability of the F0F1 ATP Synthase Are Dependent on the Energy of Interaction between γ and β Subunits* , 1997, The Journal of Biological Chemistry.

[17]  W. Junge,et al.  ATP synthase: an electrochemical transducer with rotatory mechanics. , 1997, Trends in biochemical sciences.

[18]  R. Nakamoto,et al.  Intergenic suppression of the gammaM23K uncoupling mutation in F0F1 ATP synthase by betaGlu-381 substitutions: the role of the beta380DELSEED386 segment in energy coupling. , 1998, The Biochemical journal.