Extended Evolutionary Algorithms with Stagnation-Based Extinction Protocol
暂无分享,去创建一个
[1] F. Wilcoxon. Individual Comparisons by Ranking Methods , 1945 .
[2] Hans J. Bremermann,et al. Optimization Through Evolution and Recombination , 2013 .
[3] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..
[4] G. Mendel. Versuche über Pflanzen-Hybriden , 1941, Der Zauchter Zeitschrift fur Theoretische und Angewandte Genetik.
[5] Reinhard Männer,et al. Towards an Optimal Mutation Probability for Genetic Algorithms , 1990, PPSN.
[6] Ivanoe De Falco,et al. A new mutation operator for evolutionary airfoil design , 1999, Soft Comput..
[7] Richard M. Friedberg,et al. A Learning Machine: Part II , 1959, IBM J. Res. Dev..
[8] Richard M. Friedberg,et al. A Learning Machine: Part I , 1958, IBM J. Res. Dev..
[9] O. J. Dunn. Multiple Comparisons among Means , 1961 .
[10] Ivanoe De Falco,et al. Mutation-based genetic algorithm: performance evaluation , 2002, Appl. Soft Comput..
[11] D M Raup,et al. The role of extinction in evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[12] Ł. Kuczkowski,et al. Extinction Event Concepts for the Evolutionary Algorithms , 2012 .
[13] Nitish Srivastava,et al. Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.
[14] M. Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .