Hund’s Rule and Metallic Ferromagnetism

[1]  D. Ueltschi Segregation in the Asymmetric Hubbard Model , 2003, math-ph/0311049.

[2]  Tran Minh-Tien Charge ordered ferromagnetic phase in manganites , 2003, cond-mat/0302328.

[3]  H. Tasaki Ferromagnetism in the Hubbard Model: A Constructive Approach , 2003, cond-mat/0301071.

[4]  Pedro S. Goldbaum Lower bound for the segregation energy in the Falicov-Kimball model , 2002, cond-mat/0211183.

[5]  E. Lieb,et al.  Phase separation due to quantum mechanical correlations. , 2001, Physical review letters.

[6]  E. Lieb,et al.  Segregation in the Falicov--Kimball Model , 2001, math-ph/0107003.

[7]  Vollhardt,et al.  Electronic correlations in manganites , 1999, Physical review letters.

[8]  N. Datta,et al.  Effective Hamiltonians and Phase Diagrams for Tight-Binding Models , 1998, math-ph/9809007.

[9]  K. Held,et al.  Microscopic conditions favoring itinerant ferromagnetism: Hund's rule coupling and orbital degeneracy , 1998, cond-mat/9803182.

[10]  Nilanjana Datta,et al.  Low-temperature phase diagrams of quantum lattice systems. II, Convergent perturbation expansions and stability in systems with infinite degeneracy , 1997 .

[11]  E. Lieb,et al.  Generalized Hartree-Fock theory and the Hubbard model , 1993, cond-mat/9312044.

[12]  H. Tasaki,et al.  Ferromagnetism in the Hubbard model , 1993, cond-mat/9305026.

[13]  E. Lieb,et al.  An itinerant electron model with crystalline or magnetic long range order , 1986 .

[14]  U. Brandt,et al.  Exact results for the distribution of thef-level ground state occupation in the spinless Falicov-Kimball model , 1986 .

[15]  Philip W. Anderson,et al.  New Approach to the Theory of Superexchange Interactions , 1959 .