A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels.

A density matrix-based time-dependent self-consistent field (D-TDSCF) method for the calculation of dynamic polarizabilities and first hyperpolarizabilities using the Hartree-Fock and Kohn-Sham density functional theory approaches is presented. The D-TDSCF method allows us to reduce the asymptotic scaling behavior of the computational effort from cubic to linear for systems with a nonvanishing band gap. The linear scaling is achieved by combining a density matrix-based reformulation of the TDSCF equations with linear-scaling schemes for the formation of Fock- or Kohn-Sham-type matrices. In our reformulation only potentially linear-scaling matrices enter the formulation and efficient sparse algebra routines can be employed. Furthermore, the corresponding formulas for the first hyperpolarizabilities are given in terms of zeroth- and first-order one-particle reduced density matrices according to Wigner's (2n+1) rule. The scaling behavior of our method is illustrated for first exemplary calculations with systems of up to 1011 atoms and 8899 basis functions.

[1]  Christian Ochsenfeld,et al.  Multipole-based integral estimates for the rigorous description of distance dependence in two-electron integrals. , 2005, The Journal of chemical physics.

[2]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[3]  J. Kussmann,et al.  Linear‐Scaling Methods in Quantum Chemistry , 2007 .

[4]  P. Prasad,et al.  Nonlinear optical properties of p‐nitroaniline: An ab initio time‐dependent coupled perturbed Hartree–Fock study , 1991 .

[5]  J. Perdew,et al.  Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas , 1986, Physical review. B, Condensed matter.

[6]  Trygve Helgaker,et al.  Geometrical derivatives and magnetic properties in atomic-orbital density-based Hartree-Fock theory , 2001 .

[7]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[8]  Jörg Kussmann,et al.  Structure of molecular tweezer complexes in the solid state: NMR experiments, X-ray investigations, and quantum chemical calculations. , 2007, Journal of the American Chemical Society.

[9]  Valéry Weber,et al.  Ab initio linear scaling response theory: electric polarizability by perturbed projection. , 2004, Physical review letters.

[10]  Solomon L. Pollack,et al.  Proceedings of the 1969 24th national conference , 1969 .

[11]  C. Ochsenfeld,et al.  A study of a moleculartweezer host-guest system by a combination of quantum-chemical calculations and solid-state NMR experiments. , 2002, Solid state nuclear magnetic resonance.

[12]  Nonorthogonal density-matrix perturbation theory. , 2005, The Journal of chemical physics.

[13]  Gustavo E. Scuseria,et al.  Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations , 1997 .

[14]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[15]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[16]  Jörg Kussmann,et al.  Linear‐scaling Cholesky decomposition , 2008, J. Comput. Chem..

[17]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[18]  Emanuel H. Rubensson,et al.  Systematic sparse matrix error control for linear scaling electronic structure calculations , 2005, J. Comput. Chem..

[19]  S. Karna,et al.  Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program , 1991 .

[20]  P. Pulay Improved SCF convergence acceleration , 1982 .

[21]  Jörg Kussmann,et al.  Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. , 2007, The Journal of chemical physics.

[22]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[23]  E. Zaremba Some recent developments in density functional theory , 1983 .

[24]  Christian Ochsenfeld,et al.  Linear scaling exchange gradients for Hartree–Fock and hybrid density functional theory , 2000 .

[25]  Peter Günter,et al.  Nonlinear Optical Effects and Materials , 2000 .

[26]  Hideo Sekino,et al.  Frequency dependent nonlinear optical properties of molecules , 1986 .

[27]  M. Head‐Gordon,et al.  Curvy steps for density matrix based energy minimization: tensor formulation and toy applications , 2003 .

[28]  Andreas Bohne,et al.  W3-SWEET: Carbohydrate Modeling By Internet , 1998 .

[29]  Matt Challacombe,et al.  A simplified density matrix minimization for linear scaling self-consistent field theory , 1999 .

[30]  R. Mcweeny Some Recent Advances in Density Matrix Theory , 1960 .

[31]  C. Ochsenfeld,et al.  Structure and Dynamics of the Host–Guest Complex of a Molecular Tweezer: Coupling Synthesis, Solid-State NMR, and Quantum-Chemical Calculations , 2001 .

[32]  David P. Shelton,et al.  Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase , 1994 .

[33]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[34]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[35]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[36]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[37]  Christian Ochsenfeld,et al.  Rigorous integral screening for electron correlation methods. , 2005, The Journal of chemical physics.

[38]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[39]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build , 1997 .

[40]  Paweł Sałek,et al.  Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. , 2007, The Journal of chemical physics.

[41]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[42]  Eric Schwegler,et al.  Fast assembly of the Coulomb matrix: A quantum chemical tree code , 1996 .

[43]  Filipp Furche,et al.  On the density matrix based approach to time-dependent density functional response theory , 2001 .

[44]  Martin Head-Gordon,et al.  Advances in methodologies for linear-scaling density functional calculations , 1996 .

[45]  Yihan Shao,et al.  Efficient evaluation of the Coulomb force in density-functional theory calculations , 2001 .

[46]  Paul Adrien Maurice Dirac,et al.  Note on the Interpretation of the Density Matrix in the Many-Electron Problem , 1931, Mathematical Proceedings of the Cambridge Philosophical Society.

[47]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[48]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[49]  J. Gauss,et al.  Structure assignment in the solid state by the coupling of quantum chemical calculations with NMR experiments: a columnar hexabenzocoronene derivative. , 2001, Journal of the American Chemical Society.

[50]  Gustavo E. Scuseria,et al.  Linear Scaling Density Functional Calculations with Gaussian Orbitals , 1999 .

[51]  Jürgen Gauss,et al.  Helical packing of discotic hexaphenyl hexa-peri-hexabenzocoronenes: theory and experiment. , 2007, The journal of physical chemistry. B.

[52]  M. Challacombe,et al.  Higher-order response in O(N) by perturbed projection. , 2004, The Journal of chemical physics.

[53]  Thomas Schrader,et al.  Molecular tweezer and clip in aqueous solution: unexpected self-assembly, powerful host-guest complex formation, quantum chemical 1H NMR shift calculation. , 2006, Journal of the American Chemical Society.

[54]  Jörg Kussmann,et al.  Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear-scaling method. , 2004, Angewandte Chemie.

[55]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[56]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[57]  Evert Jan Baerends,et al.  Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory , 1998 .

[58]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[59]  Martin Head-Gordon,et al.  A tensor formulation of many-electron theory in a nonorthogonal single-particle basis , 1998 .

[60]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[61]  Yihan Shao,et al.  Sparse matrix multiplications for linear scaling electronic structure calculations in an atom‐centered basis set using multiatom blocks , 2003, J. Comput. Chem..

[62]  Christian Ochsenfeld,et al.  A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .

[63]  Andreas Bohne,et al.  SWEET - WWW-based rapid 3D construction of oligo- and polysaccharides , 1999, Bioinform..

[64]  Michael J. Frisch,et al.  A linear scaling method for Hartree–Fock exchange calculations of large molecules , 1996 .

[65]  L. Landau,et al.  Lehrbuch der theoretischen Physik , 2007 .

[66]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[67]  Horst Weiss,et al.  A direct algorithm for self‐consistent‐field linear response theory and application to C60: Excitation energies, oscillator strengths, and frequency‐dependent polarizabilities , 1993 .

[68]  Trygve Helgaker,et al.  Direct optimization of the AO density matrix in Hartree-Fock and Kohn-Sham theories , 2000 .

[69]  C. Ochsenfeld An ab initio study of the relation between NMR chemical shifts and solid-state structures: hexabenzocoronene derivatives , 2000 .

[70]  Matt Challacombe,et al.  Density matrix perturbation theory. , 2003, Physical review letters.

[71]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[72]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[73]  M. Challacombe A general parallel sparse-blocked matrix multiply for linear scaling SCF theory , 2000 .

[74]  Paweł Sałek,et al.  Density-functional theory of linear and nonlinear time-dependent molecular properties , 2002 .