Simulating Fatigue Crack Growth in Spiral Bevel Gears

Abstract The boundary element method and linear elastic fracture mechanics theories are used to predict three dimensional fatigue crack trajectories in a spiral bevel pinion under a moving load. It is found that the moving load produces a non-proportional load history in a gear’s tooth root. An approach that accounts for fatigue crack closure effects is developed to propagate the crack front under the non-proportional load. The predictions are compared to experimental results. The sensitivity of the predictions to variations in loading conditions and crack growth rate model parameters is explored. Critical areas that must be understood in greater detail prior to predicting more accurate crack trajectories and crack growth rates in three dimensions are identified.

[1]  J. Schijve Predictions on Fatigue Life and Crack Growth as an Engineering Problem. A State of the Art Survey , 1996 .

[2]  R. Nuismer An energy release rate criterion for mixed mode fracture , 1975 .

[3]  H. Saunders,et al.  Multiaxial Fatigue (ASTM STP 853) , 1988 .

[4]  T Swift,et al.  Fracture Analysis of Stiffened Structure , 1984 .

[5]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[6]  Jl Rudd Air Force Damage Tolerance Design Philosophy , 1984 .

[7]  G. Sih Strain-energy-density factor applied to mixed mode crack problems , 1974 .

[8]  J. Newman A Finite-Element Analysis of Fatigue Crack Closure , 1976 .

[9]  Mario Guagliano,et al.  FATIGUE CRACK GROWTH PREDICTION IN SPECIMENS SIMILAR TO SPUR GEAR TEETH , 1997 .

[10]  Roberto Ballarini,et al.  Effect of Rim Thickness on Gear Crack Propagation Path. , 1997 .

[11]  Masanori Kawahara,et al.  Analysis on Fatigue Crack Growth Rates Under a Wide Range of Stress Ratios , 1986 .

[12]  Lester E. Alban Systematic Analysis of Gear Failures , 1985 .

[13]  Roberto Ballarini,et al.  Rim Thickness Effects on Gear Crack Propagation Life , 1997 .

[14]  Rg Forman,et al.  Application of Fracture Mechanics on the Space Shuttle , 1984 .

[15]  Anders Blom,et al.  An experimental and numerical study of crack closure , 1985 .

[16]  Faydor L. Litvin,et al.  Low-noise, high-strength, spiral-bevel gears for helicopter transmissions , 1994 .

[17]  Faydor L. Litvin,et al.  Computerized Design and Analysis of Face-Milled, Uniform Tooth Height Spiral Bevel Gear Drives , 1996 .

[18]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[19]  Faydor L. Litvin,et al.  Tooth contact shift in loaded spiral bevel gears , 1989 .

[20]  Guk-Rwang Won American Society for Testing and Materials , 1987 .

[21]  S. Glodež Experimental results of the fatigue crack growth in a gear tooth root , 1998 .

[22]  W. Elber The Significance of Fatigue Crack Closure , 1971 .

[23]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[24]  M. Olzak,et al.  NUMERICAL ANALYSIS OF 3D CRACKS PROPAGATING IN THE RAIL­ WHEEL CONTACT ZONE , 1993 .

[25]  N. K. Anifantis,et al.  Boundary element analysis of gear teeth fracture , 1997 .

[26]  Norman A. Fleck,et al.  Brittle fracture under a sliding line contact , 1994 .

[27]  Dennis P. Townsend,et al.  Surface fatigue life of M50NiL and AISI 9310 gears and rolling-contact bars , 1991 .

[28]  V. V. Panasyuk,et al.  The crack propagation theory under rolling contact , 1995 .

[29]  M. W. Brown,et al.  A REVIEW OF FATIGUE CRACK GROWTH IN STEELS UNDER MIXED MODE I AND II LOADING , 1992 .

[30]  Carl Albrecht Transmission Design Using Finite Element Method Analysis Techniques , 1988 .

[31]  J. Schijve Fatigue Crack Closure: Observations and Technical Significance , 1986 .

[32]  G. D. Bibel,et al.  Contact Stress Analysis of Spiral Bevel Gears Using Finite Element Analysis , 1995 .

[33]  Paul A. Wawrzynek,et al.  Three-Dimensional Gear Crack Propagation Studies , 1998 .

[34]  C. P. Tooth Contact Shift in Loaded Spiral Bevel Gears , 2003 .

[35]  Faydor L. Litvin,et al.  A Method for Determining Spiral-Bevel Gear Tooth Geometry for Finite Element Analysis , 1991 .

[36]  M. G. Prasanna,et al.  Maximum life spiral bevel reduction design , 1992 .

[37]  S. Chan,et al.  On the Finite Element Method in Linear Fracture Mechanics , 1970 .

[38]  Paul A. Wawrzynek,et al.  Universal crack closure integral for SIF estimation , 1998 .

[39]  G Samavedam,et al.  High-Speed Civil Transport Hybrid Laminate Sandwich Fuselage Panel Test , 1999 .

[40]  J. Newman A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading , 1981 .

[41]  G. D. Bibel,et al.  Meshing of a Spiral Bevel Gearset With 3D Finite Element Analysis. , 1996 .

[42]  J. Bressers,et al.  Fatigue and Microstructure , 1987 .

[43]  P. Mayr,et al.  Comparison of the fractographic features of a carburized steel fractured under monotonic or cyclic loading , 1996 .

[44]  Jože Flašker,et al.  Crack propagation in tooth root with variable loading , 1993 .

[45]  D. M. Parks A stiffness derivative finite element technique for determination of crack tip stress intensity factors , 1974 .

[46]  N. Fleck,et al.  Analysis of Crack Closure Under Plane Strain Conditions , 1988 .

[47]  Virginia Ann Johnson,et al.  State-of-the-art Survey , 2022 .

[48]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[49]  Ali Fatemi,et al.  Fatigue crack growth under mixed-mode I and II loading , 1996 .

[50]  David R. Owen,et al.  Engineering fracture mechanics : numerical methods and applications , 1983 .

[51]  村上 敬宜,et al.  Stress intensity factors handbook , 1987 .

[52]  P D McFadden Analysis of the Vibration of the Input Bevel Pinion in RAN (Royal Australian Navy) Wessex Helicopter Main Rotor Gearbox WAK143 Prior to Failure. , 1985 .

[53]  T. K. Hellen,et al.  Numerical methods for determining stress intensity factors vs crack depth in gear tooth roots , 1997 .

[54]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[55]  Marc Pepi Metallurgical Examination of a Failed Spiral Bevel Gear , 1996 .

[56]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[57]  Yi Zhang,et al.  Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears , 1991 .

[58]  P. Paris A rational analytic theory of fatigue , 1961 .

[59]  John J. Coy,et al.  Identification and proposed control of helicopter transmission noise at the source , 1987 .

[60]  J. Newman A crack opening stress equation for fatigue crack growth , 1984 .

[61]  Jj Au,et al.  Correlation between fatigue crack growth rate and fatigue striation spacing in AISI 9310 (AMS 6265) steel , 1981 .

[62]  David Y. Jeong,et al.  Damage tolerance analysis of detail fractures in rail , 1997 .

[63]  Xitong Zheng,et al.  Estimate by fracture mechanics theory for rolling contact fatigue life and strength of case-hardened gear materials with computer , 1991 .

[64]  M Truchon,et al.  Fatigue Crack Path Behavior Under Polymodal Fatigue , 1985 .

[65]  R. C. McClung,et al.  On the finite element analysis of fatigue crack closure—2. Numerical results , 1989 .

[66]  Mingwang Fu,et al.  Stress analysis of the precision forging die for a bevel gear and its optimal design using the boundary-element method , 1995 .